

In this session, I'll be describing the some of the enhancements that we introduced with Mascot 2.0.

There is a 'new look' for all the web pages, support for very large MudPIT searches, sequence tag and error tolerant tag searches. There were also a number of enhancements to Mascot Daemon. Finally I'll describe a number of minor changes including iteration of B, Z and X residues.

The first thing that that you will notice about Mascot 2.0 is that all the HTML pages have a new look.

There are some practical benefits to this. For example, the context sensitive menu makes navigation around the help pages and online resources much easier

 New Web Page Design No frames 	
Switch to Protein Summary Report To create a bookmark for this report, right click this link: <u>Peptide Summary Report (Funotbackedu</u> Sciex Data\Projects\Example\Data\HbA_2_1.wiff:Hemoglobin A001)	1 <u>p/PE</u>
Select All Select None Search Selected Archive Report	► net
 Removed link for bookmarking rep 	port
	(MATRI

Another benefit is that we no longer use 'frames'. The use of separate frames for the menu and the title was quite annoying with some browsers. It meant for example that if you just chose "Add to Favourites" in your browser, you could find you'd bookmarked the home page or the menu frame.

Because of this, we added the "right click this link" in earlier versions of Mascot. Now, because we don't have frames, you will find that this link has gone.

The first version of Mascot, which we released about five years ago had a limit of 300 ms-ms spectra in a single search. At the time, we couldn't conceive of anyone wanting more than this

Although Mascot 1.9 had a limit of 100,000 spectra, searches this size were only possible on 64 bit platforms. For Windows and Intel Linux systems, the practical limit was about 40,000 spectra.

Mascot 2.0 now has no such limit. The search is automatically split into chunks of 1000 spectra, and these are merged at the end of the search.

Viewing the results of huge searches in Mascot 1.9 was also an issue because of memory limitations on a 32 bit platforms

We've addressed this in Mascot 2.0 by using Mascot Parser. This makes production of the reports much less memory hungry.

There is still a limit - however, the limit is as much due to the size of a report that can be displayed in a browser as the amount of memory used by Mascot Parser.

Very large reports will still take some time to load.

For the last few versions of Mascot, there have been a number of options for formatting the results output. However, the only way to invoke these options has been by adding them to the end of the URL. To make this easier, we have now added some form controls near the top of the results report

These options were only added in Mascot 2.0.03 - so if you have Mascot 2.0.0, please get the patches from the web site.

The Format As option allows choice of peptide and protein summary along with the new select summary.

The significance threshold is the protein cut off that is used if AUTO is entered as the number of hits.

I'll describe standard versus MudPIT scoring in a minute, along with the Ions Score cut-off value.

The option to suppress the yellow pop-ups is useful with huge reports as these take up a lot of memory in Internet Explorer.

One final note, if you are using Internet Explorer with large searches, IE 5.5 is very sluggish - use 5.0 or 6.0

Large searches - 'Select Summ	ary'
Select Summary Report (/data/20020805/F018412.dat) - Microsoft Internet Explorer	
Elle Edit View Favorites Tools Help	
🛛 🚱 Back 🔻 🕑 🗸 📓 🏠 🔎 Search 🤺 Favorites 🔌 Media 🚱 🍰 😓 🔜 🧾 🌑	
Address 🕘 http://t41-dmc/mascot/cgi/master_results.pl?file=%2Fdata%2F20020805%2FF018412.dat&REPTYPE=select&_sigthreshold=0.05&REPORT 🔻 🛃 Go	owermarks 👫 \land 🎋
26. gi170716 Mass: 13767 Score: 1001 Queries matched: 45	
histone H2B - bovine	
Check to include this hit in error tolerant search or archive report	
Query Observed Mr(expt) Mr(calc) Delta Miss Score Expect Rank Peptide	
385 477.27 952.53 952.60 -0.06 0 32 0.12 1 HINDREA 383 386	
1676 569.24 1136.46 1136.54 -0.07 0 33 0.13 1 ESYSYYYK 1677	
1986 584.77 1167.52 1167.59 -0.07 0 44 0.0084 1 0VHPDTGISSK 1985 1988 1989	
<u>3166</u> 633.30 1264.59 1264.63 -0.04 1 58 0.0004 1 KESYSVYVYK <u>3159 3163 3170 3175</u>	
7405 880.37 1758.73 1758.81 -0.08 0 84 1e-006 1 AMGINNSPURE R 7407 7408 7409 741	.0 7411 7412 741
Proteins matching the same set of pentides:	
g114504257 Mass: 13898 Score	•
Multiple matches to the	Þ
	Local intranet //
same peptide sequence	
are collapsed into one	
line	
ASMS 2004	SMATRIX (SCIENCE)

The Select Summary was inspired by David Tabb's DTASelect. It is very similar to the Peptide Summary, but more compact because multiple matches to the same peptide sequence are collapsed into a single line. Also, the list of peptide matches that are not assigned to a protein hit is split into a separate report.

 We are confident that Mascot ions scoring is robust and reliable - tests with huge searches against random databases give close to the expected number of false positives

- Peptide scoring unchanged from Mascot 1.9
- Protein scoring is a tough problem, and is currently a hot topic
- Protein scores are derived from ions scores as a non-probabilistic basis for ranking protein hits.

ASMS 2004

SCIENCES

There are a number of issues with protein scoring when searches are huge, or when the number of spectra approaches the number of sequences in the database

Large MudPIT searches really test the Mascot peptide scoring - and we, along with many of our customers have run large data sets against randomised databases. We do find that we get close to the expected number of false positives, which justifies our confidence in the peptide scoring.

There are no changes to peptide scoring from Mascot 1.9

Protein scoring is a tough problem for a number of reasons, and it currently seems to be quite a hot topic.

Please note that Mascot does not assign strict probabilistic scores to proteins for MS/MS searches.

In Mascot 2.0, standard protein scoring is identical to the scoring in Mascot 1.9 - and this protein scoring works well with data sets up to several hundreds of spectra. Protein scores are derived by simply summing all of the non-duplicate peptide scores. Where there are duplicate peptides, the highest scoring peptide is used.

Although standard protein scoring works well with reasonable sized data sets, but it starts to show problems with huge MudPIT searches, where there are hundreds or thousands of low scoring peptide matches. I'll illustrate this problem:

This protein, at rank 1178, gets a score of 66, but you can see that the only evidence for this protein is a number of poor scoring peptides. Most people wouldn't consider this to be sufficient evidence for the existence of this protein.

Slightly further down the list, we see a protein that is much more believable. However, this protein gets a score lower than the previous one. Clearly we have a problem if we want to assign a cut-off point for proteins.

So, we have developed a new algorithm for calculating a protein score. These are the rules that we use:

- duplicate peptides contribute towards the score. This seems more reasonable than for a gel based search because the spectra probably came from different fractions

- the score for each peptide is not its absolute score, but the difference between the score and the threshold. This means that low scoring peptides don't contribute to the score

- Finally, the average threshold is added to the score

- For each peptide, the "threshold" is the homology threshold if there is one, otherwise it is the identity threshold

Results show that this scoring does work well with large data sets - but I must emphasize that this is not true probability based scoring at the protein level.

Select	: Summary	y Report (/da	ta/20020805/	F018412.dat) -	Microsoft	Intern	et Explo	rer		. I X
j <u>E</u> ile E	Edit ⊻iew	F <u>a</u> vorites]	ools <u>H</u> elp							
📿 Ва	ick 🕶 💮	- 🗙 😫	🏠 🔎 Si	earch	orites 😣	Media	9	🙈 - 🎍 ।	2	_ 🌑
Address	lei http://	t41-dmc/mascot,	cgi/master_resu	lts.pl?file=%2Fo	jata%2F200	20805%	2FF0184	12.dat&REPTYP	E=selec	ct8_sigthreshold=0.(💌 🄁 Go 🛛 Powermarks 🎼 📣 %
	10393	965.18	2892.52	2892.48	0.05	1	0	2.9e+002	8	VVQMLGSLGGQINKNLLTVTSSDEMMK
	10605	809.38	3233.50	3233.52	-0.01	0	12	18	1	SSFDWLTGSSTDPLVDHTSPSSDSLLFAHK
49.	gi 481	515	Mass: 41	786 Sco	re: 823	0	ueries	matched:	62	
	actin	beta' cha:	n - human			×		macchear	00	
	CR	to include	this hit	in error t	olerant	sear	ch or	archive r	eport	
This pentide is										
This peptide is	У	Observed	Mr(expt)	Mr(calc)	Delta	Miss	Score	Expect	Rank	Peptide
the only one that	at 💾	400.74	799.46	799.53	-0.06	1	39	0.023	1	RGILTLK
is not included in	n	488.69	975.36	975.44	-0.08	0	2.1	5e-005	1	AGFAGDDAPR 483
is not included in	1 5	566.72	1131.41	1131.52	-0.10	n	40	0.025	- 1	CVSETTINE 1626 1627 1629 1620 1621
protein hit 29	18	589.26	1176.51	1176.61	-0.10	ō	34	0.094	- i	ETTAL APSTNK 2104 2105
	85	599.72	1197.43	1197.51	-0.08	0	38	0.034	1	DSYVGDEAQSK
	2306	599.84	1197.66	1197.70	-0.04	0	39	0.027	1	AVFPSIVGRPR 2303 2305
	2358	602.26	1202.50	1202.55	-0.05	0	32	0.14	1	HQGVMVGMGQK 2357 2359 2360 2362 2569 257
	4222	677.80	1353.59	1353.62	-0.02	1	33	0.15	1	DSYVGDEAQSKR
	5659	758.34	1514.66	1514.74	-0.08	0	49	0.0034	1	IWHHTFYNELR 5657 5660 5661 5662 5818 595
	5668	758.83	1515.65	1515.70	-0.04	0	73	1.2e-005	1	QEYDESGPSIVHR 5666 5667 5669
	618	895.83	1789.65	1789.88	-0.23	0	95	8.9e-008	1	SYELPDGQVITIGNER 7622 7623
	834	977.46	1952.90	1953.06	-0.16	0	69	3.5e-005	1	VAPEEHPVLLTEAPLNPK 8335 8338 8340 8341 §
	<u>10564</u>	1059.13	3174.38	3174.42	-0.04	0	2	2e+002	4	CPEALF_PSFLGMES_GIHETTFNSIMK
	10589	800.65	3198.57	3198.60	-0.04	0	63	00017	1	TTGIVHDSGDGVTHTVPIYEGYALPHAILR 10572 1
	10631	1101.19	3300.54	3300.57	-0.03	U	34		-	MTQIMPET
									\leq	and it only has a
50.	gi 205	538236	Mass: 97	7159 Sco	re: 817	Q	ueries	matched:	51	accera of 2 i o no
	(XM_04	15170) myos	sin IB [Hor	no sapiens]						
	Check	to include	this hit	in error t	olerant	sear	ch or	archive r	eport	real justification for
	Query	Observed	Mr(expt)	Mr(calc)	Delta	Miss	Score	Expect	Rank	Pept differentiating from
										hit 29
										The 20.
										(MATPLY)
ASMS 200)4									SCIENCE (
										(SCIENCE)

Next, I'd like to describe another problem that is particularly evident with MudPIT data, and how to prevent it.

Look at this hit - the first thing to point out is that there are no bold red or bold black peptides. Just as a reminder, the red indicates that the peptide is the highest scoring match to the MS/MS spectra. Bold typeface is used to show that this spectra has appeared in a higher scoring protein.

So, non-bold typeface indicates that all of these peptides have been seen in a protein with a higher score.

Looking in more detail, it appears that all of the peptides are identical to protein hit 29 - another actin beta chain protein.

And since this peptide one only has a score of 2, there is no justification for differentiating it from protein hit 29.

So, there are two possible remedies to this - one is to choose "Require bold red", and the other is to set the ions score cut-off to a suitable value - for example 15.

Setting the ions score cut-off has the added benefit of making the reports load more quickly.

If you want to set a default value of 15, add an entry to the options section of mascot.dat - for details, click on the help

There were a number of changes to improve large MudPIT type searches in Mascot 2.0.

Firstly, on 32 bit platforms, some searches used to run out of memory with Mascot 1.9.

Secondly, viewing large reports was very slow and would occasionally run out of memory.

Thirdly, we have addressed some issues with protein scoring

Fourthly, we have introduced a new report

Finally, we have made it easier to switch between report formats

- Mann, M and Wilm, M, Error-tolerant identification of peptides in sequence databases by peptide sequence tags. (Anal Chem, 66(24) 4390-9 1994).
- Enter observed mass of the first peak of an identified sequence ladder, a stretch of interpreted amino acid sequence, and the observed mass of the final peak of the ladder
- 1890.2 tag(1004.1, LSADTG, 1548.5)

ASMS 2004

MATRIX SCIENCES

The sequence query, in which one or more peptide molecular masses are combined with sequence, composition and fragment ion data, is potentially the most powerful search of all. The usual source of the sequence information is interpretation of an MS/MS spectrum. While it is very difficult to determine a complete and unambiguous peptide sequence from an MS/MS spectrum, it is often possible to find a series of peaks providing 3 or 4 residues of sequence data.

This general approach was pioneered by Mann and co-workers at EMBL, who used the term "sequence tag" for the combination of a few residues of sequence data combined with molecular weight information. They defined a sequence tag derived from an MS/MS spectrum as the mass of the precursor peptide, the mass of the first peak of the identified sequence ladder, a stretch of interpreted sequence, and the mass of the final peak of the ladder.

The sequence query mode of Mascot supports both standard and error tolerant sequence tags. It also allows arbitrary combinations of fragment ion mass values, amino acid sequence data and amino acid composition data to be searched.

The format is to enter the mass of the first peak of an identified sequence ladder, a stretch of interpreted amino acid sequence, and the observed mass of the final peak of the ladder - for example:

1890.2 tag(1004.1, LSADTG, 1548.5)

In the next version of Distiller, it is easy to generate sequence tags. Simply process the spectrum, right click on a strong peak, and select "Start Sequence Tag" from the pop-up menu

This then displays possible residue matches that fall within the specified tolerance.

The arrow head at the end of the glutamic acid indicates that Distiller can find another peptide after this one.

The lack of an arrow for the cysteine and the fact that the cysteine peak is very small means that it is best to choose the glutamic acid.

Having chosen the first glutamic acid, a second is then displayed - this time there are no other choices. Clicking on the arrow again gives:

And there are no further residues to be found in this sequence.

The start mass of this tag is 627.22, the end mass is 1056.53, so we can make a sequence tag like this

785.8 tag(627.22, GEEN, 1056.53)

File Edt Yjew Favorites Nedia Address Http://t41-dmc/mascot/cgi/search_form.pl?FORMVER=285EARCH=5Q Image: Content of the search
Seack Search Agdress Protein mass Poptide tol. ± 1.
Address http://t41-dmc/mascot/cgi/master_results.pl/file=%2Fdata%2F20040519%2FF001318.dat8REPTYPE=t of comparise for the first of the
Protein mass kDa ICAT Peptide tol. ± 1.2 Da Peptide tol. ± 1.2 Da MS/MS tol. ± Peptide charge 2+ Monoisotopic Average 785.8 tag(627.22, GEEN, 1056.53) Query Potide Summary Report (/data/20040519/F001318.dat) - Microsoft Internet Explorer Image: Contract of the second sec
Peptide tol. ± 1.2 Done Peptide Summary Report (/data/20040519/F001318.dat) - Microsoft Internet Explorer Peptide Summary Report (/data/20040519/F001318.dat) - Microsoft Internet Explorer Pile Edit View Favorites Iools Help Pile Edit View Favorites Iools Help Pile Edit View Favorites Iools Help Pack • O • E O O Secret for Favorites Media O O O Powermarks M A % Address Phttp://t41-dmc/mascot/coj/master_results.pl/file=%2Fdata%2F20040519%2FF001318.dat8REPTYPE=r O O Powermarks M A % 1. Ala52445 Hass: 7050 Score: 51 Queries matched: 1 HUMF/GB02 NID: - Homo sapiens Check to include this hit in error tolerant search or archive report
Peptide charge 2+ Monoisotopic Average 785.8 tag(627.22, GEEN, 1056.53) 785.8 tag(627.22, GEEN, 1056.53) Query Image: Constraint of the second
785.8 tag(627.22, GEEN, 1056.53) Query One Done Done Peptide Summary Report (/data/2004/0519/F001318.dat) - Microsoft Internet Explorer Pile Edit View Favorites Iools Help So Back - Or All Or A
Query Image: Constraint of the second of
Done Deptide Summary Report (/data/20040519/F001318.dat) - Microsoft Internet Explorer File Edit View Favorites Iools Help Back • O • E O • Search & Favorites I • Media O • O • O • O • O • O • O • O • O • O
Peptide Summary Report (/data/20040519/F001318.dat) - Microsoft Internet Explorer Ele Edt Yiew Favorites Image: Search of the
Peptide Summary Report (/data/20040519/F001318.dat) - Microsoft Internet Explorer □ × File Edit yiew Favorites Image: Search Image: Favorites Im
File Edit Yiew Favorites Your Edit Your
Address http://t41-dmc/mascot/cgi/master_results.pl7file=%2Fdata%2F20040519%2FF001318.dat&REPTYPE=r Image: Constraint of the cons
1. <u>All52445</u> Mass: 7050 Score: 51 Queries matched: 1 HUMFGB02 NID: - Homo sapiens Check to include this hit in error tolerant search or archive report
HUMFGB02 NID: - Homo sapiens
\Box Check to include this hit in error tolerant search or archive report \Box
V uery unserved mr(expt) mr(calc) belta miss score expect kank replie
Toop Standigtopp
ASIVIS 2004 (SCIENCE)

It's possible to submit this automatically from Distiller, but it can also just put this in the query window in a sequence search form. Remember to enter the charge state of the precursor

Standard probability based Mascot scoring is used for these searches. This means that you can include several tags for each peptide and the one with the best match will get the highest score. It also means that it's possible to mix some ions and some sequence tags if desired.

The tag approach really shows it's worth when there are unknown modifications, or when only a homologous sequence is in the database.

As an example, I'll take this peptide with a score of only 21 from the unassigned list.

Incidentally, one of the new report options is to sort the unassigned list by intensity. This can be quite useful for searching for the stronger spectra that didn't get database search matches.

If we have a look at the spectrum

It is quite obviously of high quality, so it's not at all clear why there is no match.

Once again, we the sequence tag is performed as before. Of course if you don't have distiller, you can always do this manually. The complication in this case is that within the tolerance specified, it's not possible to differentiate between glutamine and lysine, and of course Isoleucine and Leucine also have the same masses. So, in this case, we can specify a tag like this.

and we get absolutely no results... so we will try an error tolerant tag search:

and this time we do get a hit with quite a high score. Notice that there are two possible hits with the same score - the sequences have a different N terminus residue, and the delta in one case is 113.7 and the other is 99.69.

đΜ	ascot Sea	rch Resull	s: Peptide	View - Mi	crosoft Int	ernet Ex	plorer													_ 8 ×
Ē	Ele Edit View Fgyorites Iools Help 🥼																			
	🕲 Back + 🕥 + 🖹 📓 🏠 🔎 Search 🤺 Favorites 🜒 Media 🤣 🎅 + 😓 🔜 🦲																			
Ado	złess 🗃 http://t41-dmc/mascot/cgi/peptide_view.pl?file=/data/20040520/F001326.dat8query=18ht=28index=PAHUA8px=1 🗾 🖻 Go Powermarks 🕅 🕕 %																			
] G	oogle - 💽 😚 Search Web - @ Search Site 🛷 PageFlank 🕧 - 🔃 Options 💼 - 🌶																			
Pe M Fo	MATRI CIENCI Ptide V S/MS Fra und in P	Y M	ASCO on of <mark>GN</mark>	t Se	arch	Re :	sults	acental	valida	ated] - hus	nan		loc	Pep atio	otide on o moo	e vie of ui dific	ew s nsu catio	sho spe on	ws ected	
Mo Un Io	atch to Q noisoto suspect ns Scor	uery 1: 14 pic mas ed modi e: 80	418.38544 s of neu fication Expect:	48 from(utral <u>p</u> n: 113. 3.6e-0	710.2000 peptide 1 70 Da, 108	00,2+) Mr(cal locate	etag(475.2 e): 1304 d in the	20,[L]) 4.68 : regio	G[L I] m N-	T[Q K]F	1134.47 N2		7							
#	a	a ⁺⁺	a*	a*++	ь	b++	b*	b*++	Seq.	у	y++	y*	y*++	#						
	l 30.0	3 15.52			58.03	29.52			G					13						
	144.0	3 72.54	127.05	64.03	172.07	86.54	155.05	78.03	N	1248.67	624.84	1231.64	616.33	12						
3	291.1	5 146.08	274.12	137.56	319.14	160.07	302.11	151.56	F	1134.63	567.82	1117.60	559.30	11						
4	419.2	210.11	402.18	201.59	447.20	224.10	430.17	215.59	Q	987.56	494.28	970.53	485.77	10						
	520.2	5 260.63	503.22	252.12	548.25	274.63	531.22	266.11	Т	859.50	430.25	842.47	421.74	9						
	633.3	4 317.17	616.31	308.66	661.33	331.17	644.30	322.66	Ι	758.45	379.73	741.43	371.22	8						
	690.3	5 345.68	673.33	337.17	718.35	359.68	701.33	351.17	G	645.37	323.19	628.34	314.67	7						_
1	803.4	4 402.22	786.41	393.71	831.44	416.22	814.41	407.71	L	588.35	294.68	571.32	286.16	6						
5	890.4	7 445.74	873.45	437.23	918.47	459.74	901.44	451.22	S	475.26	238.13	458.24	229.62	5						
10	961.5	1 481.26	944.48	472.75	989.51	495.26	972.48	486.74	Α	388.23	194.62	371.20	186.11	4						
1	1032.5	5 516.78	1015.52	508.26	1060.54	530.77	1043.52	522.26	Α	317.19	159.10	300.17	150.59	3						
12	1103.5	3 552.30	1086.56	543.78	1131.58	566.29	1114.55	557.78	Α	246.16	123.58	229.13	115.07	2						•
e D	one																	No.	cal intrane	t –

I was intrigued as to what this delta might be, and had a look on unimod.org -

iMod: Basic Data View - Microsoft Internet Explorer						
Edit View Favorites Iools Help						
) Back 🔹 📀 🛛 😰 🏠 🔎 Search 👷 Favorites 🔌 Media 🧭	। 🔗 - 😓 🗔 🗔	()				
ess 🕘 http://www.unimod.org/cgi/unimod.cgi?records_per_page=25&columns_to_view=fu	ull_name&columns_to_view=co	de_name&column:	s_to_view=mo	ono_r 💌 🄁 Go	Powermarks	₩ ⁄\$
ogle - 💽 📸 Search Web 🕞 🕸 Search Site 🛛 🚿 🛛 🎦	ageBank 🚯 👻 🛃 Options	🔁 🔹 🥒 👘				
phosphorylation to amine thiol	ser_thr_DAET	87.050655	87.1866	H(9) C(4) N O(-1) S ()
thioacylation of primary amines (N-term and Lys)	DSP	87.998285	88.1283	H(4) C(3) O S	C)
C13 label (Phosphotyrosine)	13C9_Phospho_Tyr	88.996524	88.9138	H C(-9) C13(9)	0(3))
N-ethyl iodoacetamide-d5	NEIAA-d5	90.084148	90.1353	H(2) H2(5) C(4)NO 🥑)
Acrolein addition +94	Acrolein94	94.041865	94.1112	H(6) C(6) O	C)
N-isopropylcarboxamidomethyl	NIPCAM	99.068414	99.1311	H(9) C(5) N O	e)
Succinic anhydride labeling reagent light form (N-term & K)	Suc_anh_light	100.016044	100.0728	H(4) C(4) O(3)	Q)
labeling reagent light form (N-term & K)	benzoyl	104.026215	104.1061	H(4) C(7) O	Q)
Succinic anhydride labeling reagent, heavy form (+4amu, 4C13), N-terr	m & Suc_anh+4C13	104.029463	104.0434	H(4) C13(4) O	(3))
Succinic anhydride labeling reagent, heavy form (+4amu, 4H2), N-term K	& Suc_anh+4H2	104.041151	104.0974	H2(4) C(4) O(3	3))
S-pyridylethylation	S-pyridylethyl	105.057849	105.1372	H(7) C(7) N	Q)
Acrolein addition +112	Acrolein112	112.052430	112.1265	H(8) C(6) O(2)	Q)
ubiquitinylation residue	GlyGly	114.042927	114.1026	H(6) C(4) N(2)	0(2))
Pyridyl	Pyridyl	119.037114	119.1207	H(5) C(7) N O	Q)
N-ethylmaleimide on cysteines	NEM	125.047679	125.1253	H(7) C(6) N O(2) 🥑)
Iodination	Iodination	125.896648	125.8965	H(-1) I	Q)
N-Succinimidyl-3-morpholine acetate	SMA	127.063329	127.1412	H(9) C(6) N O(2) 🥑)
Quaternary amine labeling reagent light form (N-term & K)	Quat_0	127.099714	127.1842	H(13) C(7) N C) 🥑)
Quaternary amine labeling reagent heavy (+3amu) form, N-term & K	Quat_3	130.118544	130.2027	H(10) H2(3) C((7) N O 🛛 💽)
Hydroxyphenylglyoxal arginine	Arg1HPG	132.021129	132.1162	H(4) C(8) O(2)	C)
Quaternary amine labeling reagent heavy form (+6amu), N-term & K	Quat_6	133.137375	133.2212	H(7) H2(6) C(7	') N O 🛛 💽)
Quaternary amine labeling reagent heavy form (+9amu), N-term & K	Quat_9	136.156205	136.2397	H(4) H2(9) C(7	') N O 🛛 🥑)
Total Records Returned: 181 Previou	<u>us 25 Next 25</u>			Viewing Reco	rds: 76 - 10	0

But the only thing listed here of this mass was ubiquitinylation - and this is unlikely because there's no lysine. Likewise, I found nothing suitable on Deltamass.

🖉 Peptide Summary Rep	port (Raft - 8) - Microsoft Internet Explorer	_ 8 ×								
Eile Edit View Favo	Ele Edit yjew Favorites Iools Help 🦧									
] 🔆 Back 👻 🕥 🗸 🎍	🕒 Back 🔹 🕥 🗸 📓 🏠 🔎 Search 👷 Favorites 🔌 Media 🚱 🍰 🤤 🔜 🌑									
Address 🙆 http://t41-dm	dress 🕘 http://til-dmc/mascot/cg/master_results.pli?file=/data/20040520/F001320.dat 💽 💽 Go Powermarks 🎊 A %									
Google -	💌 🚷 Search Web 👻 🖗 Search Site 🛛 🚿 🛛 PageRank 🚯 🗸 🔩 Options 💼 👻 🥒									
	· · · · · · · · · · · · · · · · · · ·									
Show	w pop-ups 💿 Suppress pop-ups 🔿 Sort unassigned Decreasing Score 🔄 Require bold red 🗖									
Select All Se	elect None Search Selected Growing Archive Report									
1. <u>AAB64400</u>	Mass: 56428 Score: 1087 Queries matched: 28									
SECRETED A	LLKALINE PHOSPHATASE Cloning vector pSEAP2-Basic.									
Check to i	nclude this hit in error tolerant search or archive report									
Query Ober	arred Mr/aymt) Mr/colc) Dalta Nice Score Frenct Dank Dantida									
	60.17 918.32 918.51 -0.19 0 49 0.0012 1 SVGVVTTTR									
25 40	62.68 923.35 923.51 -0.16 0 32 0.049 1 FPYVALSK									
✓ 47 5:	17.18 1032.34 1032.56 -0.22 0 78 1.4e-006 1 SSIFGLAPGK + Carbamidomethyl (N-ter	m) [+57.02]								
✓ <u>55</u> 5:	32.18 1062.35 1062.57 -0.22 0 63 5.9e-005 1 GSSIFGLAPGK + G->S [+30.01]									
✓ <u>62</u> 5	45.68 1089.35 1089.58 -0.23 0 50 0.0011 1 RGSSIFGLAPGK + R->G [-99.08]									
√ <u>78</u> 50	67.66 1133.30 1133.55 -0.25 0 49 0.0014 1 GNEVISVMNR + Oxidation (M)									
✓ <u>94</u> 55	93.18 1184.35 1184.60 -0.25 0 42 0.007 1 RGFFLFVEGGR + R->G [-99.08]									
✓ <u>121</u> 6	53.21 1304.41 1304.68 -0.28 0 89 1.8e-007 1 NFQTIGLSAAAR + Carbamidomethyl (N-t	ezm) [+57.02]								
✓ <u>139</u> 64	81.82 1361.63 1361.55 0.07 0 54 0.00053 1 YPDDYSQGGTR + benzoyl (N-term) [+10	4.03]								
✓ <u>150</u> 7:	10.22 1418.43 1418.73 -0.29 0 87 2.8e-007 1 KGNFQTIGLSAAAR + K->W [-14.05]	_								
✓ <u>154</u> 7:	26.18 1450.35 1450.65 -0.30 0 69 1.9e-005 1 NWYSDADVPASAR									
✓ <u>165</u> 7:	54.69 1 RIWYSDADVPASAR + $R \rightarrow G$ [-99.08]									
<u> 175</u> 55	26.15 Error tolerant search gives Autering Altering Alter									
<u>₩ 190</u> 8:	a significant match to the /1 Alternary and a significant match to the									
<u>✓ 200</u> 80	86.50 come coquence with an 1 LIPWEEENDER									
	79.24 Same Sequence with an 1 Investment of an									
218 5	93.48 additional n terminus 1 HVPDSGATATAYLCGVK + Carbamidomethyl	(C); V->M [+3:								
254 9	75.81 ASDATCIDE 1 NLIFLGDGMGVSTVTAAR + Oxidation (M)									
255 6	51.16 1 1 DGARPDVTESESGSPEYR	•								
•										
🙆 Done		Local intranet								

So, this really does seem to be unknown modification at the n terminus, and hence proves the power of the error tolerant search.

One other feature in the next version of distiller is that we have implemented a denovo algorithm - using this same spectrum, the denovo code found much of the same sequence automatically. Once again, we have used the proven Mascot scoring algorithm with Denovo. It will also be possible to submit these data as a tag search

Mascot Daemon had some major changes with version 2.0

- it is now possible to process raw data files using the Distiller libraries. This means that all the common raw data formats are now supported. The advantages are that retention times and scan numbers along with other information in the raw data files are transferred in the Mascot results. This information, which can be seen in the yellow pop-ups, makes it easy to find the original spectrum in the instrument data system or in the Distiller GUI.

The peak detection in Distiller is proving to be among the best available. In addition, this makes it possible to automate the process of of peak detection, data reduction and searching that is not possible with some data systems

A major change was that the Daemon engine has been separated from the user interface. I'll describe this in more detail shortly.

I'll also describe a couple of trouble shooting tips.

Daemon Edit Help Status Exent Log Task	n – disti Iask Editor <u>Baramet</u>	Iler options
Untriled Parameter set C:\Program Files\Matrix Science\Masor Data file ist Drag and drog data files into the area below or click on Add Delete Add Folder Add Files	Data import filter Mascot Distiller Schedule Start now Start at 12:20.04 C Real-time monitor Follow-up Actions Auto-print results Follow-up No follow-up required Discard results Repeat at intervals of Repeat at intervals of Pass data to -Ne	Mascol Deemon: Data import filter options

There is not much to say about the Distiller options. There is an additional license cost for using Distiller from Daemon, and once the addition software has been installed, the "Mascot Distiller" data import filter should be available in the drop down list.

Clicking on the "Options", allows the choice and editing of processing parameters.

Mascot Daemon is now split into two distinct parts

- the GUI, which is used to configure Daemon, edit tasks and view search results $% \left({{\left[{{{\rm{SU}}} \right]}_{\rm{T}}}_{\rm{T}}} \right)$

- a service with executes the tasks in the background even if the GUI is not running.

So, the advantage of this approach is that it no longer requires a user to be logged in at the workstation. Another change is that if the connection between Daemon and the Mascot server is lost, the results will be picked up by Daemon when the Daemon service is re-started.

There is added complexity in this version of Daemon, and for this reason we added comprehensive on-line help. So, if in doubt, please try reading that first.

The most common error that people experience is the "File not found" error when trying to access files on shared network drives. If you need to access remote files, you will need to change the service to log in as a user with appropriate network privileges. See on-line help, In depth, Mascot Daemon Service

Another slightly over-due change to Mascot 2.0 is that where there is an 'X' in the sequence, the code now iterates through all possible amino acids

For B - Mascot checks asparagine and aspartic acid

For Z - Mascot checks glutamine and glutamic acid

Here's an example here of where Mascot found a peptide match by substituting an X for a valine

And finally, there are a number of small changes.

There is now more rigorous checking of fasta files. A number of our customers unfortunately had different sequences with the same accession numbers. This obviously causes confusion at best, and incorrect answers at worst, so this now causes an error, which needs to be fixed before searches can be run.

Similarly, missing taxonomy files used to just give a warning, but now it results in an error.

For EST searches and genomic data, Mascot now uses taxonomy to determine the correct genetic code translation.

Finally, we now support high energy side chain cleavage ions: d, v, and w.

- Huge searches now practical with Mascot 2.0
- A number of new report options
- tag and etag complementary to error tolerant searching
- Distiller support within Mascot Daemon enables highly integrated workflow
- A number of minor changes.

ASMS 2004

{MATRIX \ {SCIENCE}