

Mascot Integra is supplied as a ready to run system. It does not require the extensive setup and customisation associated with a traditional LIMS package.

Rather than re-invent the wheel, we have partnered with LabVantage Solutions Inc, (www.lims.com). Their Sapphire LIMS package provides the sample tracking and workflow modelling functionality for Mascot Integra

Using the Oracle database management system enables the database to scale efficiently as your data management requirements grow

All Mascot Integra functionality is accessible through a standard web browser.

The 'raw' Mascot search results are imported into the Integra database. The schema of the database has been designed to facilitate data mining. This allows us to offer extensions to the 'Standard' Mascot reports, track sample history, offer the new clustering report and facilitates flexible adhoc querying of the database to produce custom reports using Microsoft Excel.

Filtering reports enables you to view only protein hits which match a range of specified criteria. They are very flexible and can be based on any property of the protein or its peptide matches which are stored within the database and can take runtime parameters, enabling the end user to specify the exact conditions after the filter has been designed - knowledge of the SQL query language is required to design the filters, but not to use them. For example, we could set up a filter which excludes all the protein hits from the report which do not contain at least one peptide match which is predicted to be phosphorylated.

This report is from a MudPIT run and contains 2267 protein hits – a large number of results to look through. However, we may have some a priori knowledge which we can apply to the situation – for example, we may know that there is a protein of interest in the source mixture with a pI > 9. If we design a filter which only displays protein hits with a pI value of 9 or above, then this returns 474 of those 2267 hits – the 1st of which is hit number 63

Alttp://localhost Microsoft Internet Exp	olorer	_ 8 ×
Ele Edit View Favorites Iools Help		Links » 🥂
Click here for thttp://los	Individual protein/pe	ptide
File Edit	View	
Peptide sum	matches can be approv	ed and Which are then visible
63 Selected h		
Check to ap	persistent comments	added when we view the report
Ma 🗸	\checkmark '	
	IPI00023447 has previously been selected by.	later
Comments:	1. Patricke on 31-May-2005 15:45:51.	
© <u>IP100025441</u>	Matches data from EXP-050500232	
Tax_Id=9606		
Approve	Query Observed Mr(exp) Mr(Calc) Delta Miss Score Ra	nk Peptide
Match? Quer	710 391.23 780.44 779.41 1.03 0 44 1	YEEIVK
₩ 710	1654 436.55 871.09 869.53 1.56 0 40 1	QLIVGYNK 1642
L 164	2283 458.1 914.19 913.56 0.63 0 24 2	QTVAVGVIK 2326
	<u>6834</u> 561.2 1120.39 1119.59 0.79 0 46 1	STTTGHLIYK 6832 6835 6843 6845 6848 6876
► 1654	4393 513.79 1025.57 1024.6 0.97 0 80 1	IGGIGTVPVGR 4354 4372 4383 4384 4385 4386 4391 4397 4399
☐ <u>228</u> ;	10035 636.77 1271.53 1272.65 -1.13 2 2 9	DVRRGNVAGDSK
232	14612 480.56 1438.66 1437.66 1 1 10 4	MDSTEPPYSQKR
E 425	<u>13725</u> 469.44 1405.3 1403.72 1.58 0 71 1	YYYTIIDAPGHR <u>13684</u> <u>13690</u> <u>13695</u> <u>13700</u> <u>13701</u> <u>13705</u> <u>13717</u> <u>13723</u> <u>13727</u> <u>13731</u> <u>13750</u>
I_ <u>435</u>	<u>9725</u> 630.64 1259.26 1258.62 0.63 0 93 1	SGDAAIVDMVPGK 9706 9722
437	24805 879.16 1756.31 1753.78 2.53 0 81 1	PMCVESFSDYPPLGR 24816
☐ 438;	<u>19375</u> 795.99 1569.96 1567.67 2.09 0 6 5	
L 4384	21492 551 05 1650 13 1646 87 3 26 1 15 1	FLYSGDAATYDMYDCY 22150
- 400	24590 876.29 1750.57 1749.87 0.7 1 8 4	STITCHI IYKCGGIDK
I_ <u>430</u>	30212 955.47 1908.93 1906.99 1.93 1 0 2	YYYTIIDAPGHRDFIK
☐ 4381	28990 937.24 1872.46 1870.01 2.45 1 6 4	NGOTREHALLAYTLGYK
☐ <u>439</u> :	25885 895.67 1789.32 1787.95 1.37 0 48 1	PGMVVTFAPVNVTTEVK
✓ 439:	<u>34555</u> 1013.65 2025.29 2029 -3.71 2 0 3	EAAEMGKGSFKYAWVLDK
F 100	40127 734.18 2199.52 2199.05 0.47 2 7 7	MDSTEPPYSQKRYEEIVK
L <u>439</u>	<u>32857</u> 991.59 1981.17 1981.14 0.04 1 10 2	LPLQD¥YKIGGIGT¥P¥GR
☐ 439	<u>41529</u> 749.47 2245.4 2243.05 2.35 1 4 3	PMCVESFSDYPPLGRFAVR + Oxidation (M) 40992
☐ <u>683</u> ;	<u>39141</u> 1084.75 2167.49 2165.26 2.23 1 6 1	EHALLAYTLGVKQLIVGVNK
683	<u>39067</u> 722.59 2164.74 2161.17 3.58 2 5 1	MGKEKTHINI¥¥IGH¥DSGK
	40422 1106.08 2210.15 2213.1 -2.95 0 3 2	DGNASGTTLLEALDUILPPTR 405/6
I <u>683</u>	44507 11/2./3 2343.45 2341.19 2.25 1 / /	
•	44660 1174 19 2946 95 2947 97 -1 09 2 0	
E]	48526 1241 13 2480 25 2479 18 1 07 0 58 1	SVEMHHEALSEAL PODNYCENYY 48505 49076
1		
e		S Local intranet
A SMS 2005		J MATRIX (
		(SCIENCE)
L		

All of the standard Mascot reports can be generated from the database. In addition, individual protein and peptide matches can be annotated and approved. These annotations are persistent and will be displayed on the report when viewed at a later date. A protein/peptide match can be annotated/approved as many times as you wish, so that additional notes and corrections can be added.

Because the results hare held in the database, you can choose to view just a specified range of search results, rather than displaying all of the protein hits in the report. This speeds up report generation and reduces problems with Internet Explorer opening very large results files, and also helps with working systematically through a report.

🖉 Protein hit list - Microsoft Inte	rnet Explorer							_ 8 ×
<u>File Edit View Favorites T</u>	ools <u>H</u> elp							
(MATRIX) (SCIENCE) MA	SCOT/n	itegra	Lablantage				Help SiteMap LogOff We Database: integrademo Us	bPageList 🔺 er: Patricke
Home 오 Projects 오	Studies 오	Experiments 오	Samples 오	Instruments 오	Mascot_Se	arch 오	Mascot_Data_Mining 오 🛛 Util	ities 오
Protein hit list	← Return ≪ Hide Seard	hBar 🔽 Select All	istory — Collapse	e All				
Search Bar 🛛 💋 🛃 🗶	🖃 Mascot Sear	ch Id: <u>mss-02022</u>	005-00001					-
Group by Columns: Mascot Search Ic V	□ <u>10</u>	Accessio	n <u>Descriptio</u>	<u>n</u>	1	<u>Hit</u> Rank▲	Mascot Protein Score	
Search within the Id/Accession/Desc:	□ <u>mph-02022</u> 0000606	2005- IPI000101	41 Tax_Id=96 subunit	D6 DNA polymerase	epsilon p17	600	202	
ОК	mph-02022 0000689	2005- IPI001716	96 Tax_Id=96 HECT doma	06 HECT domain pro iin protein LASU1	otein LASU1	683	180	
Search by a Query: Search by peptide	□ <u>mph-02022</u>	2005- IPI001716	Tax_Id=96 530 tubedown-1 tubedown-1	D6 Transcriptional co .00 Transcriptional c .00	oactivator coactivator	840	149	
Please supply the following additional information and	□ <u>mph-02022</u> 0000858	2005- IPI000750) <u>14</u> Tax_Id=96	D6 Putative acetyltra	ansferase	840	149	
click <u>Search Now</u>	mph-02022 0001393	2005- IPI000145	74 Tax_Id=96 related prof	06 CDC5-related pro tein	otein CDC5-	1366	84	
Proteins with matches to peptide sequence (or	mph-02022 0001397	2005- IPI000312	41 Tax_Id=96 Hypothetica	D6 Hypothetical prot Il protein	ein	1370	84	
subsequence if surrounded by %)	□ <u>mph-02022</u> 0001482	2005- IPI001853	332 Tax_Id=96 F⊡13139 H	06 Hypothetical prot ypothetical protein F	ein 1013139	1453	77	
%tplk% Search	□ <u>mph-02022</u> 0002178	2005- IPI001004	Tax_Id=96 candidate 2 syndrome o	D6 Wolf-Hirshhorn s protein Wolf-Hirshh andidate 2 protein	yndrome Iorn	2135	46	
	□ <u>mph-02022</u> 0002179	2005- IPI000242	28 Tax_Id=96 candidate 2	D6 Wolf-Hirschhorn : protein	syndrome	2136	46	
	mph-02022 0002193	2005- IPI001717	198 Tax_Id=960 MTA2	06 Metastasis associ	iated protein	2150	45	
	4- <u>0202</u> 2	2005- <u>IP1000093</u>	03 Tax_Id=96	06 DNA-binding prot	ein RFX5	2264	41	
	、 、	Id: mss-020221	005-00004					
	X	ccessio	<u>n</u> <u>Descriptio</u>	<u>n</u>	j	<u>Hit</u> Rank▲	Mascot Protein Score	
It i	s possible	e to search	<u>Tax_Id=96</u>	/ protein h	tivation- its store	ed in	the 42	
dat	abase wi	hich contai	n an ide	entified per	ptide m	atch	to a	
	sp	ecified sec	quence	or subseq	uence		REPTOLEM SCOTE	
	0001395	<u> 3FCC132</u>	componer	nt (PMID 9864354)		11	31	-
ei							Local intra	net

We can search for any accession or anything within the protein hit description. In addition to this, it is possible to search for any protein hits stored in the database which have an identified Mascot peptide match to a specified peptide sequence or subsequence. Here, we are looking for any protein hits in the database which have a peptide match containing the subsequence TPLK – one of the recognition sites for the p34cdc2 cell-cycle regulating kinase. As we can see, there are matches to several proteins which may be involved in the Cell-cycle (e.g. bub1, IPI00010141)

Another report groups protein hits from multiple reports, to allow comparison of the proteins present between the reports. This uses BLASTClust from NCBI and so uses the whole protein sequence to generate the clusters, not the peptide matches shared between the hits and not the protein accession – homologous proteins will appear in the same cluster. We can filter the proteins present in the report using the same filters which can be applied to the standard reports, and we can also provide protein sequences which we wish to exclude any matches to (e.g. Trypsin, Keratin).

🚰 http://localhost Microsoft Internet E	plover	
Eile Edit Yiew Favorites Iools Help		Links » 🥂
Cluster1 Annexin A1 (Annexin J) (Lip Chromobindin 9) (P33 (PH Cluster2 Ar059013 MD: - Homo sap Cluster3 trypsin (EC 3.4.21.4) - bovi Cluster4 Ar00537724 MD: - Homo sap Cluster5 B C001516 MD: - Homo sap Cluster6	Cortin 1) (Calpactin II) spholipase A2 inhb Shttp://coalbust Microsoft Internet Exp Efficient Status - Microsoft Internet Exp Soluter Present in: mss-01062005-00001, Top Hit ANX1_HURAN Anorsin A1 (Annex) Top Store: 900.065766642027	different samples same original urce. ered have at least t peptide match
Cluster7 nucleophosmin - human	Accession Mascot search id Description	Protein No Score Mass peptides matched
Cluster8 AK002896 NID: - Mus musc Cluster9 AF304164 NID: - Homo sapi	ANX1 PIG 01062005- Annexin A1 (Annexin - Ton 1) (Calpactin II) 00001- (Chromobindin 9) - nospholipase A2 inhib mss-	135.96 38734.98 4
Cluster10 Homo sapiens isocitrate deh (Fragment) synthetic cons Cluster11	LUHU 01062005- annexin Urkuman 00001 mss- LUHU 17032005- 00001	440.04 38689.98 30 1
CRKL protein - human <u>Cluster12</u> keratin 10, type I, epiderma	ANX1 HUMAN 1062005: Annexin A1 (Annexin I) (Lipocortin I) (Calpactin II) 00001 (Chromobindin 9) (P35) (Phospholipase A2 inhib mss-	950.06 38558.94 19
BC043235 NID: - Homo sap Cluster14	ANX1 HUMAN 17032005- 00001 mss-	440.04 38558.94 30 1
hepatoma-derived growth for <u>Cluster15</u> Homo sapiens divceraldeby	CAA64477 01062005- SSANNEXNI NID: - Sus scrofa 00001	135.96 38215.77 4
(Fragment) synthetic cons <u>Cluster16</u> AK010370 NID: - Mus musc	1AIN 17032005- annexin I - human 00001	440.04 35018.21 30
Cluster17 DTDP-4-keto-6-deoxy-D-glu Mus musculus (Mouse). Cluster18 HSEFTU NID: - Homo sapier Cluster19 BC057448 NID: - Mus musc	Cluster 2 Cluster 2 Cluster 4 Top Hit: AAF40478 AF859913 NID: - Homo sapiens Top Score: ISSA-7671911660722 Cluster contains: Accession Accession Accession Contains and Accession Ac	Protoin Nos Focuer Nass peptides
. €	search Id mss- AAF-40478 01062005- AF058913 NID: - Homo sapiens	554.77 37516.46 13
	00001 mss- 4AF40478 17032005-	489.12 37516.46 33
ASMS 2005		(MATRIX) SCIENCE)

The report shows which clusters are present in the searches. We can then take a closer look at the proteins present in the clusters. In the images on the right, yellow represents significant peptide matches (0.5%)

One of the main advantages of holding the raw mascot search results in a database is the ability to do ad hoc querying and generate custom reports. The database schema allows searches to be grouped by experiment, study, project or across the whole database, enabling complex cross search queries to be generated easily. The interface we have chosen to use to generate custom reports is Microsoft Excel.

To generate an Excel report requires knowledge of the SQL Query language and knowledge of how to get the best out of Excel. However, once the lab expert has designed an Excel report, it can be uploaded into Mascot Integra as a report template. Then the individual users can downloaded the report to use for their own search results/experiments/studies/projects.

M 🕅	1icrosoft Excel - Summary_R	eport.xl	ls						_ 8 ×
•	Eile Edit View Insert Forma	t <u>T</u> ools	Data Window Help						_ 8 ×
	A8 💌 =		2↓ <u>S</u> ort						
	A	~	Eilter	•	C		D	E	
1	Mascot search Id	mss-u.	Su <u>b</u> totals						
2	Significance rifestion	0.00	Validation						
4			Text to Columns						
5									
6			PivotTable and PivotChart Report.						
7		-	Get External <u>D</u> ata	Þ	Run Saved Query				
9		4	🕴 <u>R</u> efresh Data		No. was to be a second				
10			¥		New Web Query				
11		1			Manager Vacabase Query				
12					= Import Text File	-			
13					📫 Edit Query				
14				_	😭 Data Range Properties				
15				-	*	-			
15		-		-					
18		-		-					
19				-					
20									
21									
22									
23				-					_
24				-					
25		-		-					
20				-					
28				-				2	
29									
30									
31									
32		-		-					
33				-					
34		1		+					
36				+					
37		-		-					
38									-
4 4	> > > Sheet1 / Sheet2 / Sheet2	neet3 /		-		1		1.	
Rea	ady								

Here we have generated a query which generates summary data for a specified search using a specified peptide significance threshold. After setting up cells in the Excel worksheet which the query will take these values from, you import the Saved Query.

B3 - =	A LOOK SOM THINKY INT			
A	В	C	D	E
lascot search Id	mss-02022005-00001			
Significance Threshold	0.05			
	Number protein hits	No Queries Matched	% Search queries matched	No Significant peptide matches
lypothetical proteins	189	6581	7.90	441
Ribosomal related	123	1728	2.07	299
Franslation related	46	1499	1.80	170
(inase related	68	2081	2.50	263
listone related	38	415	0.50	162
Proteasome related	32	937	1.12	106
leat shock protein relat	e 28	1301	1.56	496
(eratin	9	251	0.30	12
Frypsin	4	45	0.05	3
Other	1773	40233	48.29	3591
Total	* 2310	45144	54.18	4247
	Total number of unassigned queries	38172	45.82	2
	Total number of queries searched	83316	100.00	4249
Total number of distinct m	natched queries			
	5%	-2%	Hypothetical proteins Kitosomal related Translation related Kinase related	
	78%	∠ _0%	 Histone related Proteasome related Heat shock protein related Keratin Trypsin Other 	

After some formatting....

This report could then be uploaded onto Integra as a template. When a user comes to download the template they will be prompted for the Mascot search Id and Significance Threshold they wish to use for their report, and the downloaded report will be based on the new values.

We'll take a closer look at how we can use these data mining tools to generate a report in a 'real world' example.

Running 2D Gel analysis from S.pombe protein extracts and then comparing two different gel spot processing protocols (manual or automated in-gel digest). We then want to compare the results obtained from the two methods to see if there are any differences between them

After the result are imported into the database we can generate an sql query to pull out the protein hit details from the two sets of searches (manual and automatic). The criteria (as are above) and can be specified within a single, simple SQL query against the protein hit table of the database.

We will then do some analysis of these data in Excel

M	crosoft Excel	- Ludwig 2dgel summ	ary 2.xls											
	Eile Edit ⊻i	jew Insert Format	<u>I</u> ools <u>D</u> ata	Wr	wobr	Help				Type a questi	on for help 🔹 🕳 🗙			
Ľ	🛩 🖬 🔒 🧌	😫 🖨 🖪 🖤 👗	🖻 🖻 - 🝼	6	. • 0	or - 🍓 🔛	Σ • 2	↓ <u>X</u> ↓	🛍 🚯 100	» · Q . 🗇 🖻 🕯 🕴 X 🗎 🛛 .				
Aria		• 10 • B I	u ≡ ≡	Ξ		9%,	00. 0.+ 0.+ 00.	使使	🗉 • 🖄	• <u>A</u> • .				
	D13 -	. fk IIIAAA far	mily ATPase			-								
	A	B	C			D			E	F G	н =			
1	land	EXP-050500219-757	7			-	Spots as	siane	d from han	d digest 77	_ _			
2	Robot	EXP-050500220-760)				Spots as	signe	d from rob	ot digest 95				
3	Fhreshold	0.0	5		8 Mir	crosoft Excel -	Ludwia 2d	ael sum	mary 2.sls					_ [6]
4				1		File Fdt We	a Incert	Format	Tools Da	ta Window Help		Type a quest	tion for help	
5						Die Eax Tie	- poor	ang la	. Tools Ra			Type or quest	iorrici neip	
6	Hand digest			1	0	☞ 🖬 🕾 🦉		A 3	6 🖽 🖽 •	🛇 🗠 • 🖓 • 🏶 🕅 Σ • 21 % 🛄 🚯 100%	• 🔍 • 💷 🖼 🐨 🛍 🖡 🕺	19 0 -		
7	SPOT_NO	ACCESSION	MASS	DE	Arial		 10 	в.	/ <u>U</u> ≡	≡ ≡ 図 図 % , % ぷ 律 律 Ⅲ・塗・Δ	_ + _			
8	35	5 SPBC1604.21c	113960.23	lpt		D13 👻	fx	IIIAAA	family ATPa	se	_			
9	46	SPAC1565.08	90353.78	IIS		M	N		0	P	Q	R	S	
10	48	3 SPAC1565.08	90353.78	IIS	1			_	-					
11	48	SPBC27B12.10c	5791.01	IIIF	2									
12	49	9 SPAC1565.08	90353.78	ШЯ	3									
13	55	SPBC16D10.08c	100616.57	ШИ	4									
14	78	SPAC9E9.03	63414.87	lle	5									
15	224	SPAC926.04c	80717.18	SV.	6 6	Robot digest								
16	248	8 SPAC926.04c	80717.18	S1	7 9	SPOT_NO	ACCESS	ION	MASS	DESCRIPTION	MASCOT_PROTEIN_SCORE	PROBABILITY	NUMBER_PE	EPTID
17	248	3 SPAC926.04c	80717.18	SV.	8	dt. 01	SPBC16L	4.210	113960.23	ptrojuba1, SPBC211.09jubiquitin-activating enzyme e1	205	1.58272E-17		
8	267	SPBC1709.05	67449.01	S	9	48	SPAC156	5.08	90353.78	ISPAU6F12.01(AAA family ATPase	361	3.97561E-33		
9	273	3 SPAC343.05	69218.75	Vr-	11	45	ORDC100	0.00	100616 67	IJSFACOF 12.0 TJAAA Tamity AT Pase	3/2	3.15/54E-34 0.09000E-30		
20	273	SPAC9.09	85685.48	IIIK	12	77	SPAC9E	10.000	83414.87	Ileu/2linutative 3.isonronv/malate dehvdratase	417	1.58272E-39		
21	288	3 SPAC926.04c	80717.18	ls∖	13	78	SPAC574	7 04c	71752 71	Inah1InahnInohr(A) binding protein	243	2 50844E-21		
22	292	2 SPBC1709.05	67449.01	S)	14	140	SPAC57A	7.04c	71752.71	lpab1pabplpoly(A) binding protein	130	5.005E-10		
23	326	5 SPAC12G12.04	62413.88	Im	15	140	SPAC9.0	3	85685.48	Illoutative homocysteine methyltransferase (5-methyltet	114	1.99253E-08		
24	328	8 SPBC646.11	58853.75	ICC.	16	140	SPAC926	.04c	80717.18	[swo1]hsp90[molecular chaperone	65.2	0.001511486		
25	342	2 SPBC32F12.10	60902.88	IIIF	17	149	SPAC57A	\7.04c	71752.71	[pab1]pabp[poly(A) binding protein	173	2.50844E-14		
6	342	2 SPAP7G5.02c	60291.54	IIIK	18	155	SPAC57A	V7.04c	71752.71	[pab1]pabp poly(A) binding protein	204	1.99253E-17		
2	345	SPBC25H2.12c	61218.52	Cd	19	160	SPAC574	47.04c	71752.71	pab1 pabp poly(A) binding protein	294	1.99253E-26		
8	349	9 SPCC794.12c	63065.54	m	20	179	SPCC173	9.13	70474.82	Illheat shock protein 70 family	217	9.98629E-19		
9	349	SPAC750.08c	25405.26	1110	21	179	SPAC130	67.02c	70384.82	heat shock protein 70 family	114	1.99253E-08		
0	367	SPAC1F8.07c	65316.24	IIIK	22	213	SPCC173	9.13	/04/4.82	heat shock protein /U family	138	7.93239E-11		
1	378	SPAC3A12.18	5/624.33	Z	23	213	OPACI30	97.UZC	70384.82	Ineat shock protein 70 family	62.2	4.002075811		
2	381	SPCC/94.12c	63065.54	Im	24	223	SPAC120	9.13 37.02e	70384.93	Illheat shock protein 70 family	104	3 97561E 09		
13	381	SPCC1442.09	55210.09	<u>I</u> II	26	223	SPAC926	1.020 104c	80717 18	Iswn1lhsr90lmolecular chanerone	84.2	1 90285E-06		
4	446	SPACIF8.07c	65316.24	UIN-	27	267	SPBC170	9.05	67449 01	Isks2lhsc1lheat shock protein 70 family	215	1.58272E-18		
5	504	SPAC23A1.10	50099.12	1et	28	273	SPAC1F5	5.02	55244.45	Illoutative protein disulphide isomerase	298	7.93239E-27		
4	► H \ Chart1	Chart2 / Chart3 / SI	heet1 / Sheet2	1	29	302	SPBC170	9.05	67449.01	[sks2]hsc1[heat shock protein 70 family	159	6.30092E-13		
ead	(30	322	SPAC120	612.04	62413.85	mcp60hsp60putative mitochondrial chaperonin 60 (PM	367	9.98629E-34		
					31	322	SPBC3B9	9.08c	17370.58	mago-nashi homolog	52.4	0.028800769		
					32	326	SPAC120	612.04	62413.8E	(mcp60)hsp60)putative mitochondrial chaperonin 60 (PM	439	6.30092E-41		
					33	328	SPBC648	.11	58853.75	[cct6][t-complex protein 1, zeta subunit	236	1.2572E-20		
					34	328	SPAC142	0.02c	59796.32	[cct5][t-complex protein 1, epsilon subunit	139	6.30092E-11		
					35	340	SPCPJ73	2.U2c	62157.58	IIIputative xylulose kinase	187	9.98629E-16		
						 HIL Chart1 / 	(unart2 /	unart3)	sneet1 (Sh	eetz / pneeta /	•			•
					Ready									
	AS	MS 20	05									{ <mark>M</mark> / SCI	ATRIX ENCE	}

Using the specified criteria, we can see that 95/110 spots have potential protein assignments from the automated digest method, compared with 77 from the manual in gel digest.

We've pulled out a lot of data relating to the quality of these matches from the database. Using Excels graphing tools we can take a closer look at the results from the two datasets to see if there are any overall differences in the data quality:

Overall quality of the data is similar – The distribution of no peptides matches and % coverage being similar for both the hand and robot (automated) datasets (the association with spot no was also expected as the lower mass proteins have been assigned the higher spot numbers). We can also plot the protein mass against the pI value for the potentially assigned protein hits to compare this with the source 2D gel information.

Eile Edit View Insert	Format <u>T</u> ools <u>D</u> a	ta <u>W</u> indow <u>H</u> elp				Type a	question for hel	lp ▼ -
rial • 10 •	B <i>I</i> <u>U</u> ≣	= = 🖬 🗑 % , 🐄 🕫	e 🚛 🔤 • 🕭 •	A - , d) 🖻 🖞 🕴 🗴	1 1 O .		
A38 🕶 🍂								
A	В	С	D	E	F	G	Н	
Hand digest								
NUMBER_PEPTIDES		PERCENTAGE_COVERAGE						
Mean	17.32	Mean	45.18					
Standard Error	0.86	Standard Error	1.33					
Median	15.00	Median	43.92					
Mode	17.00	Mode	34.57					
Standard Deviation	9.16	Standard Deviation	14.20					
J Sample Variance	03.85	Sample Variance	201.52					-
NuriUSIS Chaumaga	1.3/	Reumana	-0.32					-
2 Skewness	1.19	Development of the second seco	0.60					
Minimum	42.00	Range Minimum	25.33					
Maximum	6.00	Maximum	25.25					
2 Sum	40.00	Rum	07.10 5150.21					
Z Count	13/4.00	Count	114.00					
Confidence Level/95 0%)	1 70	Confidence Level/95.0%)	263					
Confidence Level(53.678)	1.70	Confidence Level(55.670)	2.03					
1								
Robot digest								
		PERCENTAGE COVERAGE						
3		TERGERINGE_GOVERNIGE						
1 Mean	19.20	Mean	44 71					
Standard Error	0.84	Standard Error	1.27					
i Median	17.00	Median	40.97					
/ Mode	10.00	Mode	25.00					
3 Standard Deviation	9.95	Standard Deviation	14.96					
B Sample Variance	98.97	Sample Variance	223.84				_	
) Kurtosis	1.31	Kurtosis	-0.18					
Skewness	1.25	Skewness	0.72					
2 Range	49.00	Range	66.03					
3 Minimum	6.00	Minimum	25.00					
4 Maximum	55.00	Maximum	91.03					
5 Sum	2669.00	Sum	6215.12					
6 Count	139.00	Count	139.00					
Confidence Level(95.0%)	1.67	Confidence Level(95.0%)	2.51					
▲ ► ► ► Chart1 / Chart2 / Cl	part3 / Sheet1 \ She	aet2 / Sheet3 /						1

It is very easy to generate summary statistics using standard Excel features – again similar results for the number of peptides matches and percentage coverage from the two methods.

- Where we have matches, the data in both datasets is of similarly high quality
- Robot dataset identified matches for more spots within the specified criteria
 - Extraction quality was more consistent
- Use of EXCEL reports allows us to query and present these data quickly and easily.

ASMS 2005

{MATRIX \ {SCIENCE}

🔀 Microsoft Excel -	Mudpit su	mmar	y.xls									_ 8 ×			
Eile Edit View	Insert For				_							_ 181 ×			
K2 💌	(Me	raed hit lis	st froi	n all									
A				i goa i ne ne		in an			Γ Ν	/leraeo	d ner	otide match			
1			fracti	ione of a N	<u>/IIIdD</u>	IT run				lorge					
2 ACCESSION	DES		details for a protein hit fi												
3 AAQ63401	AY3	121	4 Elle Edit View Insert Format Tools Data Window Help												
4 AAQ88393	AY3		K2												
5 BAB20776	ABU		J	ĸ	L	M				-					
6 E980235	H.S/	1			MASS	DESCRIPTION			X	fracti	ons/	searches			
	Heat	2	Details for:	E980235	■ 3529.17	H.SAPIENS HSP90	31								
9 44437866	MUSH	3		AAQ63401 AAQ88393											
10 HHMS84	heat ch	4		BAB20776	PERY	RANK	SCORE	EXPECT	MREXP	MRCALC	DELTA	MISSED PEPTIDE			
11 HS9B MOUSH	Fileat st	5	-	E980235	22	1	41.88	1.736105736	730.673448	729.438446	1.235002	ULSELLR			
12 T46243	hypoth	ati z		HHHU89 HS9B HUMAN	18	1	22.97	0.14072429508	1039.632724	1038.48692	1.145801				
13 AAA37865	MUSH	SF 6		AAA37866	50		21.00	0.146724233	1143.704172	1140.55231	3.231000				
14 BAC82488	AB0723	36 0		HHM584 mod 20052005 00021	× 33	2	29.50	24.30373202	1140.093440	1140.00231	0.12041141				
15 AAB23369	S45392	10		mss-20052005-00021 mss-20052005-00021	43	1	40.19	2.030042328	1140.072724	1140.55231	0.120417				
16 HS9B RAT	Heat sh	10 11		mss-20052005-00021	50	2	29.1	26 6628154	1141 983/48	1140.55231	1 431141				
17 Q8TBA7	Hypoth	et 12		mss-20052005-00021	97	2	33.34	9 596363644	1151 112724	1150 55057	0.562156				
18 AAC48718	SSU94	39 13		mss-20052005-00014	104	5	6.35	4937 128193	1161 692724	1159 57605	2 116674	0 SIYYITGESK			
19 BAB20777	AB0436	67 14		mss-20052005-00014	103	1	23.44	101.1596563	1160.152724	1159.57605	0.576674	0 SIYYITGESK			
20 BAC82487	AB0723	6 15		mss-20052005-00011	45	1	30.68	17.38799537	1194,732724	1193.6404	1.092328	0 IDIPNPOER			
21 CAC18967	Sequer	IC 16		mss-20052005-00010	51	1	33.1	10.50421287	1241.972724	1241.69789	0.274833	0 ADLINNLGTIAK			
22 HHHU86	heat sh	0 17		mss-20052005-00011	54	1	24.03	84,71995008	1242.512724	1241.69789	0.814833	0 ADLINNLGTIAK			
23 HS9A_HUMAN	I Heat sh	10 18		mss-20052005-00010	55	1	48.57	0.315816002	1275.222724	1274.63536	0.587363	0 ELISNASDALDK	(
24 HS9A_PIG	Heat sh	10 19		mss-20052005-00011	60	1	52.76	0.120346685	1275.222724	1274.63536	0.587363	0 ELISNASDALDK	(
25 A29170	phosph	야 20		mss-20052005-00011	68	1	34.91	6.951738825	1311.212724	1310.56259	0.650132	0 EDQTEYLEER			
26 AAP36132	Homo s	sa 21		mss-20052005-00010	63	2	54.18	0.079721127	1349.402724	1348.72717	0.675551	0 TLTLVDTGIGMT	К		
27 CAA59331	HS2PP	H 22		mss-20052005-00011	82	1	31.29	15.50788679	1349.462724	1348.72717	0.735551	0 TLTLVDTGIGMT	К		
28 ENOA_HUMA	V Alpha e	n 23		mss-20052005-00011	83	4	9.6	2255.077364	1351.502724	1348.72717	2.775551	0 TLTLVDTGIGMT	к		
29 Q7Z3V6	Hypoth	et 24		mss-20052005-00010	68	2	29.88	21.54172172	1416.242724	1415.63031	0.612414	0 EGLELPEDEEE	к		
30 HHMS86	heat sh	0 25		mss-20052005-00011	100	1	52.83	0.109215049	1416.022724	1415.63031	0.392414	0 EGLELPEDEEE	К		
31 HS9A MOUSE	: Heat sh	10 26		mss-20052005-00020	99	1	37.54	3.72573359	1530.083448	1526.73648	3.346967	0 SLTNDWEDHLA	WK I		
32 Q8UY52	Hspca	pr 27		mss-20052005-00021	118	1	63.72	0.008862511	1529.743448	1526.73648	3.006967	0 SLTNDWEDHLA	VK		
33 Q91XWU	Heat sh	10 28		mss-20052005-00021	116	1	32.29	12.33101215	1529.314172	1526.73648	2.577691	0 SLTNDWEDHLA	VK		
34 A35922	dnaK-ty	(p 29		mss-20052005-00021	11/	1	59.63	0.022750908	1529.383448	1526.73648	2.646967	U SLINDWEDHLA	WK .		
35 GRUNNA	mypoth Heat al	et 30		mss-20052005-00020	98	1	29.33	24.82778342	1529.844172	1526.73648	3.10/691	U SLINDWEDHLA	WK N/K		
27 627077	neat sr	0 31		mss-20052005-00020	96	1	55.Ub	0.005163272	1029.443448	1526.73646	2.706967				
38 BAB18615	AB0240	25 20		mss-20052005-00011 mos 20052005-00014	124	1	12.76	0.000902907	1040.033448	1040.70967	0.10622				
DADIO015	A00343	0 24	-	mas-20052005-00011	123	1	40.25	40.90006122	1040.003448	1040.70367	-0.10023 0.405611				
Sneet:	V Pueers V	35		mss-20052005-00020	171	2	20.20	2670 523823	2175.423440	2175.93784	1.235612	0 YHTSOSODEM	ISLSEVVSP		
Ready		36			17.1	2	0.1	2010.020020	2.117.11.3440	21/0.00/04	1.200012		OLUCI FUR		
		37											8		
			()) Shee	t1 / Sheet2 / Sheet3 /					1						
		Rea	ady												
ASI	/S	20	005									(MAT) SCIEN	RIX (ICE)		

Some additional examples of the types of reports it is easy to generate from Integra but very hard to produce from the standard reports....

Here we have combined search results from 17 fractions of a MudPIT run, generating a merged hit list. We can also generate a merged peptide match list for each protein hit identified, combining the peptide matches to the protein from all of the Mascot searches (and hence source MudPIT fractions).

So we can check the quality of our 1^{st} dimension chromatography...this generated from the same 17 MudPIT fractions. All of the peptides with a e value below the 0.05 threshold from all of the fractions have been identified and then cross checked against the search results from each fraction to see if the peptide is present (the yellow background shows the peptide is present, blue means it was absent from the search) – we can see that many of the peptides are present across multiple (usually adjacent) fractions.

A protein hit we're not sure of – have we identified it elsewhere in the same experiment? and if so, what peptides did we match. In this experiment we have used the same source data, searched with different search parameters. The hit LUHU (an annexin) from a particular search is of interest but the scores are borderline. We can see from the other searches in the experiment that we have previously matched this hit and obtained a similar range of peptides.

Comparison between two PMF search strategies for a series of datafiles, then looking at the Mascot protein score and % coverage from the two strategies for the top hit for each source file.

Whatever Mods were picked they overall didn't help, except possibly for 2190\0_E2 which might warrant further investigation (sig threshold 55)

Missing final point for 78/0_K3 for % coverage is because a possible PMF mixture was picked up by the Mods search. One of the proteins in the mixture was the same as that picked up by the No mods search.

Some knowledge of SQL required to generate the custom reports and filters for the standard reports. However, these only need to be done once and can then be used as templates by any other user.

