

The standard approach to protein identification using MS/MS data is the bottom up approach where the target proteins are digested into relatively small fragments and MS/MS and subsequent sequence identification is of individual peptides. The bottom up approach has proven to be a very successful, robust strategy, allowing for a high throughput. The main disadvantages of this approach are that you are identifying the individual peptide sequences and the proteins present in your mixture are then inferred from the peptides identified. Because peptides are shared between homologous proteins, there is often ambiguity concerning which proteins are present.

Middle down approaches are intermediate approaches where the protease used to digest the source proteins cuts at less common amino acids, resulting in longer peptides being generated.

In a top down experiment, MS/MS is carried out on the intact protein.

The main advantage of a top down approach is that you're using intact proteins as your source sample in the mass spectrometer. This means that you don't need to carry out a, potentially time consuming, digestion step (with associated purification steps). It also means that there are no issues with protein inference – in bottom up proteomics you're inferring the presence of proteins from the analysed peptides which can be a tricky step to get right, especially when considering peptides which are found in multiple proteins, or peptides shared between different isoforms of the same protein.

This allows you to characterise post translational modifications at a protein level and the presence of different splice variants in a more co-ordinated fashion – information which could easily get muddled up when carrying out bottom up analysis. Therefore, Top Down is a powerful approach if you are studying the presence of different isoforms of a protein, or of differential post translation modification of proteins – information that would be lost in a bottom up experiment.

However, top down approaches have a number of disadvantages.

For a variety of reasons, Top Down approaches tend not to be well suited to studying unknown proteins since unsuspected modifications or sequence variants can stop you from getting a match to the protein and the work involved in then identifying the cause of the failure can be time consuming. If you're doing a bottom up approach you may lose a certain percentage of your peptide matches because of unsuspected chemical or post-translational modifications but you'll normally still be able to get matches to the proteins in your sample because you'll get matches from other, non-modified, peptides. However, in a top-down experiment you'll often only have a single spectrum for a protein and an unsuspected modification could well prevent you from getting a match.

Because you have to select high charge state precursors in order to work on a precursor with an m/z within the mass range of the analyser, the raw MS/MS data from a top down dataset will typically have many different charge state series within it, often with overlapping envelopes and shared peaks. Deconvoluting the peaklist is therefore normally required and this can be a time consuming step.

Searching the standard sequence databases with top-down data is probably not a good idea because your data may represent a mutant or splice variant not represented by default in the database. So some effort is needed to build up a database containing all the required sequences or you could miss a large percentage of your matches, so you'll probably need to build up a database containing splice variants and known mutants of the sequences of interest.

Standard Mascot has a precursor ion limit of 16kDa. Mascot Top Down lifts this to 110kDa. If you have Mascot Top Down licensed, then you use your Mascot server in the normal way, but searches with precursor masses of greater than 16kDa are automatically submitted to the Mascot Top Down executable. In order to enable Mascot Top Down you require a new license and a 30 day trial license is available from us on request.

Mascot Server will only try and match singly or doubly charged fragment ions, but because you normally have to select a precursor with a high charge state for top down work, most ECD and FTICR instruments will produce fragments with much higher charge states. It is therefore important to 'decharge' the fragment masses.

If you are using Mascot Distiller to produce the peak list and perform the search then, on the Tools menu, select Preferences and click on the *Peak List Format* tab. Select the *Output as MH*+ for the *Fragment ions in MS/MS peak lists* option. To make this the default, choose *Save as defaults* from the down arrow next to the OK button.

If you are preparing your peak list in this way, you may wish to create a special instrument definition with only 1+ fragments.

In an ideal world, the analyte for a top down experiment will be identical to the sequence entry in the database. An enzyme must be specified when performing a Mascot search, so it is necessary to specify a 'non cutting' enzyme. Using the configuration utility available from the home page on your local Mascot server, select the enzymes link, add a new enzyme and, for example add in a NoCleave definition such as the one shown.

Unfortunately, the sequence in the database may not be identical to the sample. For example, the database sequences may contain signal peptides. In this case, the only alternative is to search using no enzyme, which is of course somewhat slower.

If there is a large discrepancy between the sequence database entry and your analyte – for example due to variable splicing – you may well fail to get a match from a top down search. For this reason, a non-redundant database such as SwissProt is not a good choice for carrying out top-down database searching. Non-identical databases, such as NCBInr and UNIREF100, have a wider range of sequences explicitly represented and would be a better choice.

Normally you know the proteins you are working on when carrying out top down work and are interested in seeing which isoforms, or what modification patterns, are present. SwissProt contains annotation information which includes primary sequence variants (such as splice variants, residue substitutions), and information about sequence regions that are usually removed from the mature protein (such as signal peptides and propeptides). Therefore, another option would be to download the sequences of interest from SwissProt and choose to include isoforms.

EST and unprocessed genomic DNA databases are not good choices for Top Down searching of course. Many EST entries will contain sequencing errors which lead to frame shifts, many only represent fragments of proteins. Genomic databases often contain intron/exon boundaries. These can lead you to missing many peptide matches in a bottom up search, but will stop you getting any matches at all from a top down dataset.

Identifying all modified sites in a known protein is a common reason for carrying out a top down experiment. One strategy for doing this is to produce a database with all known mutant, splice variant etc. forms of the sequences of interest and then to search this with a number of possible modifications – for example, you may know or suspect that the protein is phosphorylated , N-terminally acetylated etc and also allow for common processing modifications. As with a standard Mascot search, you are limited to 9 variable modifications in this standard search, but that would normally be more than sufficient. You should really only take this approach with modifications just to get a match.

The error tolerant search iterates through a large number of possible modifications and is therefore well suited to top down searches where you are looking for modifications. However this only considers proteins with at least one significant peptide match from the standard, first pass, search. If you know which protein you are analysing you could seed your peaklist with a single ms/ms spectrum that matches the protein to trigger off the second pass search. This seed peaklist can be a fake spectrum, of course.

If these methods don't produce believable results, you can carry out error tolerant tag searches using the NoCleave enzyme. This allows the mass value to 'float' enabling you to get a match when you have an unknown modification or mutation.

Both the error tolerant and the error tolerant tag search are only going to find a match if you have one unsuspected modification or sequence change. Getting a match from Mascot TD where you have multiple changes, say multiple unsuspected modifications or SNPs is going to be difficult.

Lets take a look at some example searches and results from top down. Our first example is using a dataset supplied by Bruker. In this case, it has been possible to search using the NoCleave enzyme, using a reasonable peptide tolerance and a tight ms-ms tolerance and no modifications.

Processing Options - \\SKIPPY\dfs\mascot_test_data\scratch\TD.opt	
MS Processing MS/MS Processing Time Domain MS Peak Picking MS/MS Peak Ricking	
Upsentroiding Presuesor Charge Peak half width 1002 Data points per Da 400 Always uncentroid 3rd choice Pata points per Da 400 Data points per Da 400 Data points per Da 400 Multi-Format Spectrum Precursor Selection Preferred type Profile Peaks Re-determine precursor m/z value when possible Maximum charge 2	
Vise precursor charge as maximum	
Save Load OK Cancel Help	
MASCOT : Mascot Top Down © 2011	Matrix Science

Peak detection for a top down dataset can be quite tricky to get right and you'll probably need to work on the parameters for each dataset, even if you're using Mascot Distiller. I'm just going to run through some of the critical settings to look at in Distiller – please note these are not suggested value for any particular dataset. These are just some of the parameters you may need to look at and change when processing a top down raw data file:

On the MS/MS Processing tab, if you have centroided data make sure you have 'Always uncentroid' checkbox checked, set the 'Peak half width' to something like 0.02 and the 'Data points per Da' to say 400. Specify a default precursor charge range, say 15+ to 30+, and on the Peaks section make sure the 'Use precursor charge' as maximum checkbox is checked.

Processing Options - \\SKIPPY\dfs\mascot_test_data\scratch\TD.opt						
MS Processing MS/MS Processing Time Domain MS Peak Picking MS/MS Peak Picking						
Un-centroiding Precursor Charge						
Peak half width Processing Options - \\SKIPPY\dfs\mascot_test_data\scratch\TD.opt						
Data points per Da With Processing MS Processing True Domain MS Peak Picking MS/MS Peak Picking						
Re-gridding						
Multi-Format Spectrum Minimum signal to noise (S/N) 2 Fit method Isotope Distribution Isotope Distribution <thisotope distribution<="" th=""> Isotope Distribution</thisotope>						
Peaks Maximum peak m/z 110,000						
Minimum number Peak Profile						
Maximum charge Expected peak width (Da) 0.02 Minimum peak m/z 112.5						
Maximum peak width (Da) 0.04 Maximum peak m/z 121.5						
Save + L						
Save Load OK Cancel Help						
MASCOT : Mascot Top Down © 2011 Matrix Science	SCIENCES					

On the MS Peak Picking tab, you may want to slightly decrease the Correlation threshold from 0.7, say to 0.6 and increase the maximum peak m/z to 110,000. If you've uncentroided a centroided dataset change the expected peak width to the same value and alter the minimum and maximum peak widths accordingly.

Processing Options - \\SKI	PPY\dfs\mascot_test_data\scrate	:h\TD.opt	×						
MS Processing MS/MS Processing Time Domain MS Peak Picking MS/MS Peak Picking									
- Un-centroiding	Precursor Charge								
Peak half width	Processing Options - \\SKIPPY	dfs\mascot_test_data\scratch\TD.opt							
Always uncentroid Re-gridding Data points per Da Multi-Format Spectrum Preferred type Peaks	MS Processing MS/MS Proce Filtering Correlation threshold (Rho) Minimum signal to noise (S) Minimum peak m/z Maximum peak m/z	ssing Time Domain MS Peak Picking MS/MS Peak Picking General General Apply baseline correct Difference Stressing Options - \\SKIPPY\dfs\mascot_test_data\\ MS Processing MS/MS Processing Time Domain M	king tion Teotone Distribution V S Peak Picking MS/MS Peak Picking						
Minimum number Maximum charge IV Use precursor cha Save T	Peak Profile Minimum peak width (Da) Expected peak width (Da) Maximum peak width (Da) Reject width outliers	Filtering Correlation threshold (Rho) Minimum signal to noise (S/N) Minimum peak m/z Maximum peak m/z 110,00 -Beak Brofile	General General Image: Same as MS Peak Picking 1mage: Comparison of the same as MS Picking 1mage: Comparison of the same as MS Pic						
<u> </u>		Minimum peak width (Da) 0.0 Expected peak width (Da) 0.0	01 Pick single peaks in this range (eg. reporter ions) 02 Minimum peak m/z 112.5						
	Save 🔹 Load	Maximum peak width (Da) 0.0	Maximum peak m/z 121.5						
		Save T Load	OK Cancel Help						
MASCO	: Mascot T	op Down © 20	D11 Matrix Science						

Finally on the MS/MS Peak Picking tab, make sure you have the 'Same as MS Peak Picking' checkbox checked.

We submit the search to Mascot as usual

And here are the results – a match to Myoglobin. Just like a standard peptide summary report for a match to a single peptide, although the score is somewhat higher.

In our second example, we're working on a known protein – in this case human Superoxide dismutase. However, neither a NoCleave nor No Enzyme search produces a match from SwissProt, possibly because of an unsuspected modification. One method of identifying modifications and sequence variants like this in Mascot is to carry out the two pass Error tolerant search, which attempts to identify unsuspected modifications and primary sequence variants by testing a long list of modifications against protein hits identified in a standard, first pass, search. To use this, we need to get a match to our protein of interest in the first pass search – so we need to include a spectrum guaranteed to get us a match included in the peaklist. Because we're working on a known protein we can do this – there are various tools available for generating theoretical spectra based on a given protein/peptide sequence. If you wish to write something yourself to generate the fake spectrum then our free Mascot results library, Mascot Parser, includes methods which allow you to do this. You can access Parser from C++, PERL and Java. For this example, I wrote a small piece of Java code to output a fake spectrum for Superoxide dismutase and included it in an MGF peaklist file with the experimental data and then submitted the peaklist file to a Mascot error tolerant search.

Ignore the match to query 2 - that is the match to the fake spectrum which enabled us to carry out the error tolerant pass. Query 1 is our experimental spectrum and the Mascot error tolerant search managed to get a match to it by allowing an n-terminal modification.

Mascot Search Results: Peptide View - Mozilla Firefox									
Eile Edit View Higtory Bookmarks Iools Help									
🔇 🖸 C 🔀 🏠 🗋 http://yabby/mascot/cgi/peptide_view.pl?file=/da	rta/20110516/1	002076.dat&hit=6&px=18	Iquery=18isection=1	7&ave_thresh=3	8&_ignoreionsscorebelow=0&report=0&_sigthreshold=(🏠 - 🔣 - Google 🖉 🖉				
🔬 Most Visited 🥮 Getting Started 🔜 Latest Headlines 🐫 Google 🚍 Overview (Java 2	Platf 🔆	The World Clock – Ti 🧧	Java 2 Platform SE	5.0 📄 Matrix Sc	cience - Home 📄 Matrix Science - Datab				
Peptide Summar × Mascot Search × Mascot Search Re×	Peptide Sum	mar × 📄 Matrix Sci	ence 🗴 📄 F	eptide Summar.	🗴 📄 Peptide Summar 🗴 📄 Mascot Search Re 🗴 📄 Mascot Search Re 🗴 👢 Peptide Summar 🗴 🔅 🦷				
(MATRIX) SCIENCE Mascot Search Results					-				
Peptide View									
MS/MS Fragmentation of ATKAVCVLKGDGPVQGIINFEQKESNGPVKVWGSIKGLTEGLHGF Found in SODC_HUMAN, Superoxide dismutase [Cu-Zn] OS=Homo sapiens	MSMS Fragmentation of ATKAYCVLKGDGPVQGINFEQKESNGPVKVWGSIKGLTEGLHGFHVHEFGDNTAGCTSAGPHINPLSRKHGGPKDEERHVGDLGNVTADKDGVADVSIEDSVISLSGDHCHGRTLVVHEKADDLGKGGNEESTKTGNAGSRLAC Forunt is SODE_UTMAN, Superoxide dismutate [Cu-Zu] OS=Homo supiers GN=SODI PE=1 SV=2								
Match to Query 1: 15836.862724 from(15837.870000,1+) scans(1) rtinsecond Title: 1: Scan 1 (rt=0) [C:MSDATA/Top down/Bruker data/SOD ECD 5V isol Data file SOD ECD 5V isolation 1451 20V 000001.1.11 mef	ls(0) index(0 lation 1451)) 20V_000001.1.1.11.dt	a]		-				
	DR	PANTHER;	PTHR1000	3; SOD	Cu Zn; 1.				
Cack mouse within plot area to zoom in by factor of two about that point Or. Plotfrom 0 to 17000 Da Full range	DR	Pfam; PF0	0080; So	d_Cu; 1	. –				
Label all possible matches Label matches used for scoring	DR	PRINTS; P	R00068;	CUZNDIS	EMTASE.				
	DR	SUPFAM; S	SF49329;	SOD Cu	ı Zn; 1.				
	DR	PROSITE;	PS00087;	SOD_CU	J ZN 1; 1.				
9a5798a ? #	DR	PROSITE;	PS00332;	SOD_CU	J ZN 2; 1.				
	PE	1: Eviden	ce at pr	otein 1	level;				
	KW	3D-struct	ure; Ace	tylatio	on; Amyotrophic lateral sclerosis; Antioxidant;				
	KW	Complete	proteome	; Coppe	er; Cytoplasm; Direct protein sequencing;				
200 0 g	KW	Disease m	utation;	Disulf	fide bond; Metal-binding; Neurodegeneration;				
	KW Oxidoreductase: Phosphoprotein: Ubl conjugation: Zinc.								
	FT	INIT MET	1	1	Removed.				
2011 (2011) (201	FT	CHAIN	2	154	Superoxide dismutase [Cu-Zn].				
	FT				/FTId=PRO 0000164057.				
0 2000 4000 6000 8000 10000 12000 14000	16 FT	METAL	47	47	Copper; catalytic.				
Monoisotopic mass of pentral pentide Mr(calc): 15836.8740	FT	METAL	49	49	Copper; catalytic.				
Variable modifications:	FT	METAL	64	64	Copper; catalytic.				
N-term : Acetyl (N-term) Ions Score: 195	FT	METAL	64	64	Zinc; structural.				
Matches : 42/608 fragment ions using 67 most intense peaks	⁽⁾ FT	METAL	72	72	Zinc; structural.				
# c Seq. y z+1 z+2 #	FT	METAL	81	81	Zinc; structural.				
1 131.0815 A 153	FT	METAL	84	84	Zinc; structural.				
2 232.1292 T 15724.8335 15708.8148 15709.8226 152	FT	METAL	121	121	Copper; catalytic.				
3 360.2241 K 15623.7858 15607.7671 15608.7749 151	FT	MOD RES	2	2	N-acetylalanine.				
4 431.2613 A 15495.6909 15479.6721 15480.6800 150	FT	MOD RES	71	71	N6-acetyllysine (By similarity).				
5 530.3297 V 15424.6538 15408.6350 15409.6429 149	FT	MOD RES	99	99	Phosphoserine.				
6 633.3389 C 15325.5853 15309.5666 15310.5744 148	FT	MOD RES	123	123	N6-acetyllysine.				
7 732.4073 V 15222.5762 15206.5574 15207.5653 147		-							
8 845.4913 L 15123.5077 15107.4890 15108.4968 146									
9 972 5863 K 15010 4237 14004 4050 14005 4128 145									
× Find:	case								
Done					S				

The error tolerant match identified a number of possibilities for this, but the match with the lowest precursor delta is N-terminal Acetylation. N-terminal acetylation is a common post-translational modification after loss of the initiator methionine, as we have in this match, and this assignment is supported by the SwissProt annotation for the protein.

The next example is top-down analysis of bacteriorhodopsin taken from Ryan *et al.* (2010) Raw data and peaklists from the paper can be downloaded from Proteome Commons.

Initial MS/MS searches using either NoCleave or no enzyme specificity yielded no significant matches, so the next step is to try an error tolerant tag search. This is an even more flexible approach than the standard error tolerant search, but does require you to call enough accurate sequence tags to carry out the search.

In Mascot Distiller we can call some sequence tags and submit an error tolerant tag search to Mascot TD.

A search of varsplic processed SwissProt still produced no matches.

However, a search of NCBInr gives us a number of good matches to various Bacteriorhodopsin entries, with some large mass delta values as allowed for by the error tolerant tag search. Looking at these in more detail it quickly becomes clear why we're not getting a match to varsplic processed SwissProt.

🥹 Ba	teriorhodop:	sin precursor -	Halobacteriur	n salinariu	m - Mozilla Firefox			x		
Eile	Edit View	History Book	marks Iools	Help						
\leq	🕞 - C	- × 🏠	http://v	www.unip	rot.org/uniprot/P02945#ref10		Songle 🖉			
🙇 М	ost Visited 🧕	Getting Start	ed <u>a</u> Latest	Headlines	🔧 Google 🚍 Overview (Jav	a 2 Platf 🜞 The World (llock - Ti 😇 Java 2 Platform SE 5.0 🗋 Matrix Science - Home 📄 Matrix Science - Datab			
0.	Sacteriorhod	opsin precurse	or - Halob	+				-		
Na	mes · Attri	ibutes - Gen	ieral annota	tion · O	ntologies - Sequence ann	otation · Sequences · F	teferences · Cross-refs · Entry info · Documents Customize order	^		
Se	equence	annotation	n (Features	3)						
	Feature	e kev	Position(s)	Length	Description	Graphical view	Feature identifier			
		,								
N	lolecule pr	ocessing								
1	Propept	tide	1 – 13	13		-	PRO_0000020246			
[Chain		14 - 262	249	Bacteriorhodopsin	-	PRO_0000020247			
	logions									
	egiona .						SwissProt sequence has propertide			
-	Topolog	gical domain	14 - 23	10	Extracellular		- Swissi for sequence has propertide			
-	Tansm	iembrane	24 - 42	19	Helical; Name=Helix A		romoved from mature protein			
-	Transm	ambrano	43 = 30	19	Halical: Nama=Halix B	_	• removed from mature protein			
	Topolor	nical domain	76 - 91	16	Extracellular		• not romoved by varsalic			
	Transm	embrane	92 - 109	18	Helical; Name=Helix C		• not removed by varspric			
1	Topolog	gical domain	110 - 120	11	Cytoplasmic		· No ontwo required to match Sudapprat			
[Transm	embrane	121 - 140	20	Helical; Name=Helix D		• No-enzyme required to match swissProt			
[Topolog	gical domain	141 - 147	7	Extracellular					
-	Transm	embrane	148 - 167	20	Helical; Name=Helix E		 Include Retinvlidene (K) as variable mod 			
	Topolog	gical domain	168 - 185	18	Cytoplasmic	-	moludo notingilacilo (ny ao valiabio moa			
1	Transm	embrane	186 - 204	19	Helical: Name=Helix F					
4	MAT	RIX (Ма		+ Soonal	Docul	ta			
(SCIEN	VCEJ	IVLa.	scu	n Search	I Kesul	LS			
т	Dontid	lo Vier								
1	epuo	ie viev	N .							
N	/IS/MS	Fragme	ntation	of						
0	DAOIT	GRPE	WIWLA	LGI	ALMGLGTLY	FLVKGMGV	SDPDAKKFYAITTLVPAIAFTMYLSMLLGYGLTMVPFGGEONPIYWARYADWLFT	ГР		
E	iound in	mil208	055 ba	terio	hodonsin [synthe	tic construct]				
-	ound n	i gij200i	000,000	iciio.	nodopsin [syndic	ue consulacij				
	6-4-1- A	0	1. 2702	2.24	1224 6(27022	251600 1+2 :	4			
10	fatch to	o Query	1: 2703	2.54	+524 from(27055	.551600,1+) m	$dex(0) etag(21556.251, GAG[L]1] v_21/55.500) etag(0644.499, [L]1]G1G[L]1]1WV_7/4/8.920)$			
1	itle: 1:	Scan 1 (rt=0)							
				~						
M	lonois	otopic	mass	or n	sutral peptide	Mr(calc):	27049.3521			
	ariad.	re moa	lileat	ions	(17)					
K216 : KetInylidene (K)										
T	Tons Sorre: 175 Expedite 2.9e-015 (help)									
1	0113 3	core	175 B.	1980	0. 2.30-013	(merp)				
×F	ind:			t 🕆 <u>P</u> re	rious 🖉 Highlight <u>a</u> ll 🔲 Mat	<u>c</u> h case				
								S		

The matches from NCBInr are all from cloned, mutant or mature protein sequences which have had a 13 residue pro-peptide removed. Unfortunately varsplic does not process signal or pro-peptides so the only way to match the sequence in SwissProt would be to either run another round of processing to remove the pro-peptide or to drop enzyme specificity – and we cannot do for an error tolerant tag search. So for this example we'll carry on using nr for our tag searches while we try and explain the cause(s) of the mass deltas identified in the error tolerant tag search.

According to the paper, the precursor for both the apo- and holo- protein species of bacteriorhodopsin were observed, and the holoprotein species was deliberately selected for MS/MS i.e. the Retinylidene co-factor was still attached to the protein, and precursor selection was specifically done to select this species. So we should have included Retinylidene (K) as a variable modification in the search conditions. If you do that then the error tolerant tag search finds an unsuspected modification of approximately -17Da N terminal to L61 – which can be explained as N-terminal pyro-Glu

If we now carry out a no-enzyme MS/MS search using Retinyleidene and pyro-Glu as variable modifications we can get a good match to the SwissProt entry.

Mascot Search Results: Protein View - Mozilla Firefox		de state	Management Restort - In	- Contraction					1 ×
Eile Edit View Higtory Bookmarks Iools Help									
C X 🟠 🗋 http://yabby/mascot/cgi/protein_view.pli	file=./data/20110511/F001959.dat&h	it=BACR_HALSA8	tdb_idx=1&px=1&tave_thresh=69&_igr	oreionsscorebelow=0&re	eport=08_sigthreshold	l=C☆ -	Google 🗧		2 🐠
🚈 Most Visited 🥮 Getting Started 💫 Latest Headlines 🔧 Google 🚍 Overvie	ew (Java 2 Platf 🜞 The World Clo	ick – Ti 🧧 Jave	a 2 Platform SE 5.0 📋 Matrix Science	- Home 📄 Matrix Scien	ce - Datab				
Peptide Summary Report (MSMS to × C Mascot Search Results: Prote	ein Vi × 🔶								-
(MATRIX) SCIENCE Mascot Search Results									Í
Protein View	Membrane Prote	in Post-tr	anslational Modific	ations by FT	-MS				
Bacteriorhodopsin OS-Halobacterium salinarium GN=bop Found in search of tempfile									
Nominal mass (Mg): 28238; Calculated pI value: 4.62 NCBI BLAST search of <u>BACR HALSA</u> against nr Unformatted sequence string for pasting into other ap		,	Membrane proteins and t	TABLE II heir modification	s studied by to	p-down	FT-MS		
Taxonomy: <u>Halobacterium salinarum</u>	Protein	SwissProt accession	Atomic formula	Cal culated Monoisotopic mass (Da)	Measured monoisotopic mass (Da)	Delta (ppm)	P Score	Modifications	
Variable modariestorios: eetanjateen (n),din-spylo-di No enzyme cleavage specificity Sequence Coverage: 94% Matched peptides shown in Bold Red	Bacterio-rhodopain	P02945	C ₁₂₈₀ H ₁₉₆₆ N ₂₉₀ O ₃₃₄ S ₉	27032.3256	27032.3443*	4.5*	6.84e-43	Residues 14-261 ^b , N-terminal pyroglu, retina at 229	el
1 INCLUEITAVE OVGGAGENTER PERITIALAT ALABIGETYE LINEARMADE 2 INCLUEITAVE OVGGAGENTER PERITIALATION PERITIALITANA PERITIALATION PERITIALATION PERITIALATION PERITIALITA PERITIAL									
о .00 <u>р</u> 0 .00 0.01 0.01 0.01 0.01 27000 27000 100 100 100 100 100 100 100	бо 0.74 0.72 0.68 ВНS еггог 0 рря	27000	28000 Mass (Da)						
10 BAG BAGA CONTRACTOR CONTRACTOR CONTRACTO	ales; □ Math case								Þ
Done									ę

Taking a look at the protein view report, we can see that the match starts at Glutamine 14 - after the pro-peptide sequence. The match ends at Serine 261, which is in agreement with the results presented in Ryan *et al.* (2010) who also found that the C-terminal Aspartic Acid was removed.

Wascot Search Results: Peptide View - Mozilla Firefox	the seales whether	and and the second s							
File Est Yew Hotoy Bookmarks Iools Hep									
C X 🟠 🗋 http://yebby/mascot/cgi/peptidie_view.plfilies./data/20110511/f001959.dat&query=1&hthiLindnessBACR_HALSA&pus1§ions5&uve_thresh=698.jgnoreionsscorebolowe0&repo 🏠 - 🚺 - Google 🖉									
🏽 Most Vasted 🍓 Getting Started 🛓 Latest Headlines 🖞 Google 🖻 Overview (Java 2 Platf.: 🐲 The World Clock - Ti 😇 Java 2 Platform SE 50 🗋 Matrix Science - Home 🗋 Matrix Science - Datab									
Peptide Summary Report (MSMS to × Mascot Search Results: Peptide Vi × Mascot Search	λesults: Protein View × ÷		-						
(MATRIX) SCIENCE/ Mascot Search Results									
Peptide View									
MS/MS Fragmentation of QAQITGRPEWIWLALGTALMGLGTLYFLVKGMGVSDPDAKKFYAITTLVPALAFTM Found in BACR_HALSA, Bacteriothodopsin OS=Halobacterium salimarium GN=bop PE=1 SV=	MS MS Fragmentation of QAQITGREFNWLALGTALMGLGTLYFLVKGMGVSDPDAKKFYAITTLVPAIAFINYLSMLLGYGLTMVPFGGEQNPIYWARYADWLFTTPLLLLDLALLVDADQGTILALVGADGIMIGTGLVGALTKVYSYRFVWWAISTAAML- Found B BACRF, RIAJAS, Bacterichtodopsin OS-Habbacterium sälnavium GN=bop PE=1 SV=2								
Match to Query 1: 27032.344724 from(27033.352000,1+) scans(1) rtinseconds(0) index(0) Title: 1: Scan 1 (rt=0)									
Data file tempfile Top scoring peptide	matches to c	uery 1							
Click mouse within plot area to zoom in by factor of two 1: Scan 1 (rt=0)									
Or, Plotfrom 0 to 28000 Da Score greater than Label all possible matches Da Label matches used for	69 indicates	identity							
Score Expect	Delta Hit	Protein Peptide							
· · · · · · · · · · · · · · · · · · ·	0.0191 1	BACR HALSA S.QAQITGRPEWIN	VLALGTALMGLGTLYFLVKGMGVSDPDAKKFYAITI						
8 8 9 9 9 1 184.9 1.6e-013	0.0191 1	BACR_HALSA S.QAQITGRPEWIN	VLALGTALMGLGTLYFLVKGMGVSDPDAKKFYAITI						
「	0.0191 1	BACR HALSA S.QAQITGRPEWIN	VLALGTALMGLGTLYFLVKGMGVSDPDAKKFYAITI						
169.3 5.9e-012	0.0191 1	BACR_HALSA S.QAQITGRPEWIN	VLALGTALMGLGTLYFLVKGMGVSDPDAKKFYAITI						
Amino acid modificatio	15								
Modified residue	14	1 Pyrrolidone carboxylic acid	+						
Monoisotopic mass of neutral peptide Mr(cal Modified residue	229	1 N6-(retinylidene)lysine							
Variable modifications: Incontrol toordado N-term : Gln->pyro-Glu (N-term Q)		i i i i i i i i i i i i i i i i i i i							
K216 : Retinylidene (K) Ions Score: Expect: 2.7e-019									
Matches : 80/1457 Ite. (help)									
# b b* b ⁰ =K229 y ⁰ #									
2 183.0764 100.0499 A 20922.3009 20903.2743 20904.2903 247									
3 311.1330 294.1084 Q 20831.2088 20834.2372 20833.2332 240									
5 525 2667 508 2402 507 2562 T 26610 1211 26593 0946 26592 1106 244									
6 582.2882 565.2617 564.2776 G 26509.0734 26492.0469 26491.0629 243									
7 738.3893 721.3628 720.3787 R 26452.0520 26435.0254 26434.0414 242									
8 835.4421 818.4155 817.4315 P 26295.9509 26278.9243 26277.9403 241			-						
C III			۶.						
A rinu			8						

Looking at the potential site of Retinylidene, the top match from Mascot is to K216 in the peptide with a score of 242.6. The second highest scoring match is to K129 modified and has a score of 184.9. That is still a good match, but I'd feel pretty confident in assigning K216 as the site of modification with the drop in score of approximately 58 between the matches. Confidence in that assignment grows even further when you see that K216 in the peptide is K229 in the full protein sequence including the pro-peptide – which is where SwissProt says the modification site is (and is even telling us about the pyro-glu). Again, these assignments are in agreement with the results presented in Ryan *et al.*

