

I'd like to describe some of the new features in Mascot 2.4. Many of these relate to reports, such as 'Report Builder', that allows you to build a customised table of proteins and export it straight to Excel. More on this and the other new report features shortly.

One of the big stumbling blocks in Mascot administration has been automatic database updates. The functionality to automatically keep FASTA files up to date has always been there, but configuring it has required editing Perl files and having a good understanding of the operating system. In Mascot 2.4, we've replaced the old database configuration script (db_gui.pl) and the database update script (db_update.pl) with a single, browser-based Database Manager. We'll see it in action in the latter part of the talk.

Finally, if I have time, I'll mention some other improvements and bug fixes.

Report Builder	
Proteins (3024) Quantitation (3248) Unassigned (39559) Protein families 1-10 (out of 3024)	
Mascot 2.4 Proteins (3024) Report Builder Unassigned (39559) Protein families 1-10 (out of 3024)	
MASCOT : Mascot Server 2.4 © 2011 Matrix Science	<i>(MATRIX)</i> (SCIENCE)

In Mascot 2.3, reports for large searches default to the Protein Family Summary. This has a Quantitation tab, which contains a simple table of all the top-level protein hits, and provides an overview of the search result, particularly when the main interest is protein level quantitation. In Mascot 2.4, this tab has been renamed to Report Builder to reflect the fact that it now includes a great deal of additional functionality.

Report Builder does what it says: allows you to build a customised table of protein hits. You can choose which columns to include, and their order, filter out proteins that are of no interest, such as one-hit wonders, and export the table in CSV format directly to Excel. I'll now show you some of the basic functionality using a result report for an iTRAQ experiment as an example.

Column	IS (1)	2 out of 27) —		unc	olumi	IS				
Filters:	(nor	ne)					-				
[7	E	xpor	t to E	Excel		Top	p-leve	el prot	eins
Export a	s CSI	/					_	7			
† Family	M	DB	Accession	Score	Mass	Matches	Pep(sig)	Sequence	d(sig)	emPAI	Description
1	Y	IPI_human	@IPI00784154	7185	68936	225	161		40	128.20	Tax_Id=9606 6
2	1	buman	@IPI00396378	6596	40335	194	149	152	28	892.67	Tax_Id=9606 I
2	2	IPI_hum	@IPI00215965	4059	41553	165	113	31	23	290.01	Tax_Id=9606 h
2	3	IPI_human	176692	1885	36263	85	58	19	12	22.70	Tax_Id=9606 P
2	4	IPI_human	101P10041	1112	42925	65	32	26	13	7.74	Tax_Id=9606 I:
2	5	IPI_human	IPI000 Sor	t bv	anv	23	11	12	8	2.66	Tax_Id=9606 H
3	1	IPI_human	@1P1000			258	171	28	21	397.70	Tax_Id=9606 A
3	2	IPI_human	@1P1000 C	olun	nn	196	128	25	16	77.83	Tax_Id=9606 A
3	3	IPI_human	dellP100003269	2042	44990	99	54	15	7	4.51	Tax_Id=9606 h
3	4	IPI_human	ďIPI00248359	1059	84119	96	45	19	6	0.92	Tax_Id=9606 P
4	1	IPI_human	@IPI00003865	5231	78964	215	151	52	39	139.45	Tax_Id=96061
4	2	IPI_human	dIPI00304925	5056	77588	220	132	46	35	85.72	Tax_Id=9606 H
4	з	IPI_human	d'IPI00514377	5033	77574	219	131	46	35	85.72	Tax_Id=9606 h
4	4	IPI_human	@IPI00003362	4199	81404	222	119	50	39	52.85	Tax_Id=9606 H
4	5	IPI_human	delPI00007765	3068	81502	151	70	56	31	11.14	Tax_Id=9606 \$
4	6	IPI_human	dIPI00301277	2308	78147	129	67	37	16	5.68	Tax_Id=9606 H
4	7	IPI_human	₫IPI00339269	1828	77116	97	44	33	10	2.13	Tax_Id=9606 H
4	8	IPI_human	diPi00397340	602	78659	45	19	22	8	1.31	Tax_Id=9606 P
5	1	IPI_human	d'IPI00479186	5182	63836	275	161	53	40	159.18	Tax_Id=9606 p
5	2	IPI_human	⊯IPI00784179	4598	63984	245	142	51	38	102.35	Tax_Id=9606 5
5	3	IPI_human	diPI00743867	458	10908	52	18	10	4	10.78	Tax_Id=9606 9
6	1	IPI_human	dIPI00219018	5147	39928	194	115	36	25	314.86	Tax_Id=9606 0
Z	1	IPI_human	d'IPI00011654	4879	52313	241	144	29	23	169.95	Tax_Id=9606 T
(B)	1	10	111.			1		I			

The table has one row for each of the top-level protein hits, sometimes called anchor proteins. Same-set or subset proteins do not appear. If you need to see a subset hits, you just go to the Proteins tab. Since a family can contain several protein hits, there will be as many rows per family as there are top-level proteins in the family.

If your search gives a lot of same-set proteins, you can select which same-set protein to show in the list by choosing a preferred taxonomy. We'll come back to that later in the talk.

The table can be exported as CSV with one click.

You can sort the table by clicking on a column header. The currently active sort order is shown by an arrow in the relevant column; up means ascending, down means descending. The sort order is also preserved when you export as CSV.

Enabled Family Member Accession Score Mass	Database emPAI	Available	[~			
Family Member Accession Score Mass	Database emPAI			~			
Num. of significant matches Num. of significant matches Num. of significant sequences 115/114 116/114 117/114 Description	15/114 Number of p Significant (Not-normal SD(geo) (11) 16/114 Number of p Significant (Nurt-normal SD(geo) (11) SD(geo) (11)	Deptides (11 115/114) (115/114) (5/114) Deptides (11 116/114) (116/114) (116/114) (116/114) (117/114) (117/114) (7/114)	5/114) 6/114) 7/114)				
T T Filters: (none) Export as CSV TFamily M DB Accession Scc	ore Mass	Matches	Appl Pep(sig)	y Sequences	Seg(sig)	emPAI	Description
1 1 IPI human ØIPI00784154 71	85 68936	225	161	53	40	128.20	Tax Id=9606 6
2 1 IPI human 21P100396378 65	96 40335	194	149	32	28	892.67	Tax Id=9606 Is
	41550	165	113	31	23	290.01	Tax 1d=9606 h
2 2 IPI human 21PI00215965 40	109 41053	103	113				
2 2 IPI_human ₫IPI00215965 40 2 3 IPI_human ₫IPI00176692 18	41553	85	58	19	12	22.70	Tax Id=9606 PI

You can choose which columns to include and exclude by moving them between these two lists. The columns are categorised into groups. The basic set of columns that are always available are under "Protein hits". Each quantitation method gets its own set of columns, so these groups depend on which method you are using, if any.

Here we've added the quantitation ratio columns and removed database and emPAI to make some room on the slides. This is a single-database search, so the database column has the same value in each row -- not very interesting.

You can re-order the columns by using the up and down buttons here.

The changes take effect when you click Apply. The table will be reloaded with the new columns. The columns you've chosen to view and their order will be the same if you export as CSV.

Filters:	s (1 (noi	3 out of 27) ne)		_	Filter	out u	nwante	ed pro	teins			
Export as	s CS	~										
† Family	M	Accession	Score	Mass	Matches	Pep(sig)	Sequences	Seq(sig)	115/114	116/114	117/114	Desc
1	1	enPI00784154	7185	68936	225	161	53	40	0.945	0.818	0.806	Tax_I
2	1	₫1PI00396378	6596	40335	194	149	32	28	0.986	0.922	0.812	Tax_I
2	2	r¶bl00215965	4059	41553	165	113	31	23	0.988	0.897	0.939	Tax_I
2	3	enPI00176692	1885	36263	85	58	19	12	1.020	0.967	1.093	Tax_I
2	4	d1PI00419373	1112	42925	65	32	26	13	1.028	1.062	0.960	Tax_I
2	5	PI00011913	329	33698	23	11	12	8	1.047	1.037	1.221	Tax_I
3	1	≥1PI00021439	6470	44868	258	171	28	21	1.115	0.837	0.900	Tax_I
3	2	₫1PI00021428	4041	45182	196	128	25	16	1.110	0.832	0.896	Tax_I
3	з	⊴1PI00003269	2042	44990	99	54	15	7	1.160	0.866	0.936	Tax_I
3	4	efIPI00248359	1059	84119	96	45	19	6	1.131	0.859	0.874	Tax_I
4	1	enpi00003865	5231	78964	215	151	52	39	0.920	0.788	0.864	Tax_I
4	2	z1PI00304925	5056	77588	220	132	46	35	0.961	0.709	0.897	Tax_I
4	3	@1PI00514377	5033	77574	219	131	46	35	0.961	0.710	0.897	Tax_I
4	4	efIPI00003362	4199	81404	222	119	50	39	0.989	0.932	0.838	Tax_I
4	5	₫IPI00007765	3068	81502	151	70	56	31	0.924	0.854	0.775	Tax_I
4	6	PI00301277	2308	78147	129	67	37	16	0.964	0.694	0.819	Tax_I
4	7	enpi00339269	1828	77116	97	44	33	10	0.977	0.746	0.870	Tax_I
4	8	enPI00397340	602	78659	45	19	22	8	0.966	0.895	0.960	Tax_I
5	1	₫IPI00479186	5182	63836	275	161	53	40	1.048	0.961	0.909	Tax_I
5	2	d1PI00784179	4598	63984	245	142	51	38	1.058	0.940	0.886	Tax_I
5	3	±1PI00743867	458	10908	52	18	10	4	1.010	1.020	0.911	Tax_I
6	1	d1PI00219018	5147	39928	194	115	36	25	0.927	0.973	0.959	Tax_I
Z	1	d1PI00011654	4879	52313	241	144	29	23	1.049	1.119	1.007	Tax_I
-		.1					1	1	10 20 20 20			>

After choosing apply, the table is displayed with the new settings. We have some 3200 hits here, but maybe they are not all of interest. This is where filtering comes in.

First, let's filter out one-hit wonders, to comply with MCP guidelines. The relevant column is Seq(sig), which is the number of significant distinct sequence matches in the protein. There are no one-hit wonders in the first 24 hits, shown here, but there are dozens further down in the list. By the way, the column names are abbreviated here to save space, but you can always see the full title in a tooltip.

Proteins	; (30 hits	24) Report E 6 (3248 prot	Builder	Unassi	igned (3955)	2)		
► Columns ▼Filters:	s (1: (non	B out of 27) (P) Num. of signific	ant sequ	ences	○ ≥ ○	2	ilter	
f <u>Family</u>	M	Accession	<u>Score</u>	Mass	Matches	Pep(sig)	Sequences	
<u>1</u> 2	1	ZIPI00784154 ZIPI00396378	6596	68936 40335	225	161 149	53 32	
			and division			101510400		
ASCOT	: M	ascot Serve	r 2.4	© 2011	Matrix Science			ATRIX (IENCE)

To filter out the one-hit wonder proteins, you simply select the column by which to filter, enter a value, and click Filter.

Flotein	s (30	24) Report B	Builder	Unassi	igned (3955)	9)	
Protein	hits	s (2032 prot	eins)		Number o	f hits char	nges
Export as		Accession	Score	Mass	Matches	Pep(sig)	Seque
1	1	dIPI00784154	7185	68936	225	161	
		AIDI00396378	6596	40335	194	149	
2	1	EIF100000000					
2 2	1 2	IPI00215965	4059	41553	165	113	

The table reloads and the number of proteins has reduced from 3248 to 2032, so there were quite a few one-hit wonders. Any currently active filters are shown above the table, and the number of proteins is updated every time a filter is applied. If the number doesn't change, it means no protein hits were removed.

Proteins	s (30	24) Report E	Builder	Unassi	igned (3955)	9)		
Protein	hits	s (2032 prot	eins)					
Column	s (1	3 out of 27)						
▼ Filters:	Nu	m. of significa	nt sequ	ences" >	= 2			
	١	Num. of significar	nt seque	nces [≥	0		Ren	nove 🗆
AND \$		115/114		0	•	>	· \$] [1	
								Update
Export as	CS	/					_	
↑ <u>Family</u>	м	Accession	<u>Score</u>	Mass	Matches	Pep(sig)	<u>Sequences</u>	Seq(sig)
1	1	d'IPI00784154	7185	68936	225	161	53	40
2	1	deline=100396378	6596	40335	194	149	32	28
ASCO [®]	Т	: Mascot Se	erver 2	.4	© 2011 Matrix S	Science		(MATRIX (SCIENCE)

Let's assume you want to know which proteins were up regulated in the sample labelled with iTRAQ 115 relative to the 114 sample and simultaneously down regulated in 116. You just need to add two more filters, the first of which is shown here.

Proteins	; (30	24) Report	Builder	Unass	igned (3955	9)		
Protein	hits	s (917 prote	eins)					
Column	s (1	3 out of 27)						
Filters:	(11	5/114 > 1 AND	"Num.	of signit	icant sequ	ences" >=	2)	
		115/114 > 🗘] [1				Rer	move 🗆
AND \$	1	Num. of significa	nt seque	nces ≥	≎] 2		Rer	move 🗆
AND		116/114		1	0		< \$ 1	
							ſ	Update
Export as	C 51							
1 Family	м	Accession	Score	Mass	Matches	Pep(sig)	Sequences	Seq(sig)
2	3	d'IPI00176692	1885	36263	85	58	19	12
4	1		1110	42025	65	22	26	15

The filters need to be added one at a time, and the table is updated between each addition.

Protein	s (30	24) Report	Builder	Unass	igned (3955	9)					§ perm	nalink
Protein	hits	s (388 prote	eins) F	amil	v viev	V						
Column	e /1	a out of 27)	Ŀ	~ ~	,	•						1
P Column		5 out 01 27)	/	/								
Filters:	(115	/114 > 1 AND	-	4 < 1 AM	ID 'Num. o	of significa	nt sequences	s" >= 2)				
Export a	s CS\											
	1	/.	-									
TEamily	M	Accession	Score	Mass	Matches	Pep(sig)	Sequences	Seq(sig)	115/114	116/114	117/114	Desc
2	3	≥TPI00176692	1885	36263	85	58	19	12	1.020	0.967	1.093	Tax_le
N C	1	BIPI00021439	6470	44868	258	171	28	21	1.115	0.837	0.900	Tax_Ic
3	2	SIPI00021428	2041	45182	196	128	25	16	1.110	0.832	0.896	Tax_le
2	3	×1000034050	1059	84110	99	54	10		1.160	0.866	0.936	Tax II
2 5	1	MIPI00479	5182	63836	275	161	19	40	1.049	0.039	0.909	Tax Ir
5	2	TPI007841	4598	63984	245	142	51	38	1.058	0.940	0.886	Tax Is
9	1	r1PI0045531	4380	43388	201	123	40	26	1.035	0.999	0.929	Tax Is
10	1	PIPI00334775	173	96496	214	126	60	44	1.031	0.953	0.937	Tax Is
10	2	g1PI00784295	45	96470	184	108	58	42	1.007	0.938	0.979	Tax Is
10	4	21PI00555565		66227	72	38	22	11	1.019	0.985	1.019	Tax le
11	2	d1PI00216171	1 1	51275	76	33	16	5	1.051	0.901	0.730	Tax_le
12	3	rfIPI00010951		73563	159	15	92	10	1.071	0.943	0.912	Tax_I
13	4	⊴1PI00736008	20	1203	156	76	34	21	1.045	0.903	0.907	Tax_le
20	1	d'IP100186290	Due		16	103	60	41	1.064	0.961	0.963	Tax_le
20	2	⊴1PI00003519	Pro	tein	view	13	27	11	1.296	0.946	0.954	Tax_lt
26	1	≥f1PI00303476	2370	29903	142	64	30	17	1.026	0.917	0.873	Tax_le
27	2	⊴1PI00479359	1179	77531	126	55	46	31	1.031	0.931	0.935	Tax_le
27	3	dIPI00017367	794	78412	114	49	50	28	1.008	0.950	0.942	Tax_le
27	4	d1PI00384282	406	18445	56	23	30	11	1.056	0.957	0.957	Tax_I
34	1	d1PI00021263	2150	30892	77	50	20	14	1.019	0.889	0.838	Tax_le
34	2	⊠1PI00216318	1293	31183	80	44	21	13	1.030	0.889	0.812	Tax_I
34	3	27PI00000816	1207	32031	73	41	22	15	1.016	0.972	0.993	Tax_I
Done		10										>
Done												

Now we're down to 388 proteins, of which all are up regulated in 115, as you can see here, and down regulated in 116, relative to 114. One-hit wonders excluded.

If you want, you can drill down into the data: click on the accession string to get the regular Protein View. Click on the family number and the report will switch to the Proteins tab, scrolling and changing page if necessary to display the selected protein. This allows you to examine the peptide level data.

If you export as CSV now, the exported data contains exactly what you see in this table, apart from the formatting.

That was an overview of Report Builder. Now, let's take a brief look at a new format control called Preferred Taxonomy

In some databases, like NCBI nr, each entry represents multiple proteins. In Mascot 2.3 and earlier, it is always the first protein in the title line that is displayed in reports. If you applied a taxonomy filter for, say, Bos taurus, and the protein entry that matched had something else as the first protein, you might see something you didn't expect. Similarly, if you get same-set hits for a protein, there's by definition no evidence to differentiate between them. You might get a hit for, say, the same protein in Mus musculus and Rattus norvegicus, which would be grouped as same-sets. Which one is shown in Mascot 2.3 and earlier depends on simple sort order rules applied to the accession string.

lor	inificance thres is score or expe	hold p< 0.0 ect cut-off 0	5 Max. nu Dendro	ımber of famili grams cut at	es AUTO] ⊿[help]
Pre	eferred taxonon	ny [tus		
		Score	Mass			
ZCAPR1	MOUSE	77	78121			
▼3 san	nesets of CAP	PR1_MOUSE				
ZCAPR1	RAT	77	78073			
∠CAPR1	BOVIN	77	78280			
d CAPR1	HUMAN	77	78318			
				Score	Mass	
		ZCAPR1_	RAT	77	78073	
		▼3 same	esets of CAP	R1_RAT		
		ZCAPR1_	MOUSE	77	78121	
		ZCAPR1_	BOVIN	77	78280	
		ZCAPR1_H	HUMAN	77	78318	

The new format control allows you to specify a preferred taxonomy to be selected as the anchor protein in such cases.

In the NCBI nr case, you can select Bos taurus here to make the Bos taurus entry the default one. This means the correct accession string and description line are swapped in, if the protein entry has a Bos taurus protein.

In the same-set protein case, as you can see here, you can select Rattus as the preferred taxonomy to make CAPR1_RAT the preferred same-set protein.

In Mascot 2.4, the additional taxonomy information required for this control is saved in the results file. The preferred taxonomy control will always be available for new searches. If a file is from Mascot 2.3 or earlier, the databases that were used in the search need to be configured and online. Otherwise the control will be hidden, because there would be no way of getting the required taxonomy information.

False Discovery Rate (FDR) is the number of significant peptide matches in the decoy results divided by the number of significant matches in the target results.

The way to change the FDR in the report is to change the significance threshold in the format controls.

In Mascot 2.3 and earlier, you had to use trial and error to find the significance threshold that gave the required FDR. Slightly tedious. In Mascot 2.4, you can click a button and have make the adjustment automatically.

Auto-adjust to a rec Protein Family Summary Filter Significance threshold p< 0.0 Ions score or expect cut-off o	Tweak here Max. number of families AUTO @[help] Dendrograms cut at 0
Preferred taxonomy All entries	
 ▼Decoy search summary Peptide matches in t - above identity threshold - above identity or homology threshold Decoy results are available in zthe decoy report. 	target in Decoy FDR 2343 96 4.10% Adjust to 1% ¢ 2851 220 7.72% Adjust to 1% ¢ Or here in Mascot 2.4
MASCOT : Mascot Server 2.4	© 2011 Matrix Science

For example, this search of the ABRF iPRG2008 data set has a 4.1% FDR when the significance threshold is set to 5%. By trial and error, you can get the count above the homology threshold to 0.99% FDR by setting significance threshold to 0.0065. But you need to wait for caching to finish after each change in format controls.

In Mascot 2.4, you can select a target FDR from a dropdown list and click "Adjust" to have the significance threshold adjusted so that you get 1%FDR, or whichever FDR you chose. The list of FDR percentages is configurable by editing mascot.dat.

Note that the setting to get a given FDR for the identity threshold will be a little different from the setting for the homology threshold. Usually, you will see better sensitivity by using the homology threshold. Here, we see 1832 matches by using the homology threshold compared with 1514 matches for the identity threshold

The final new feature in the reports that I'd like to tell you about is modification site analysis.

Site specificity delta score	
Which sites were modified? Score > 30 indicates identity Score > 25 indicates homology 304 1 58 2.4e-05 ▼1 U R.GLKEGMNPSYDEYADSDEDQHDAYLER.M + Phos 304 1 37 0.0033 2 R.GLKEGMNPSYDEYADSDEDQHDAYLER.M + Phos 304 1 32 0.01 3 R.GLKEGMNPSYDEYADSDEDQHDAYLER.M + Phos 304 1 32 0.01 3 R.GLKEGMNPSYDEYADSDEDQHDAYLER.M + Phos 304 1 22 0.11 4 R.GLKEGMNPSYDEYADSDEDQHDAYLER.M + Phos 304 1 18 0.23 5 R.GLKEGMNPSYDEYADSDEDQHDAYLER.M + Phos	<mark>spho (ST)</mark> spho (Y) spho (Y) spho (Y) spho (ST)
	(MATRIX)

You have no doubt seen cases like this. These are the top scoring matches to a particular spectrum. The peptide is clearly phosphorylated, but can we be sure of the phosphorylation site? Is only the top match correct, or do we have a mixture of peptides modified at different sites?

At last year's user meeting, Bernhard Kuster described how the Mascot score difference could be used for reliable site assignment when there are matches to the same spectrum with different arrangements of modifications. This work has now appeared in MCP. We have implemented this approach in the Mascot 2.4 Peptide View report. The only real difference is that we have generalised it to work for any variable modification, not just phosphorylation

This is the same query as in the earlier slide. You can see that probabilities have been assigned to the five alternative site assignments. Because all possible arrangements are listed, the probabilities sum up to 100% (well, 99.99% due to rounding error). By definition, a score difference of 10 means a factor of 10 in probability. If there are only two possible assignments and their scores are 48 and 38, the relative confidence that the first one is correct is 91%. The relative confidence that the second one is correct must then be 9%.

In this query, there are more than two matches, but you can still see that the matches with scores 32 and 22 differ by about a factor of 10 in relative probability. This calculation assumes that at least the first match in the query is above significance threshold, so it can be assumed to be a correct match. If there are no alternative sites in the sequence where modification could have occurred, then there is no ambiguity and no site assignment probabilities are reported.

Here's another example, this time with deamidation and carbamidomethylation. In order to calculate site specificities, the results file has to be from Mascot 2.2 or newer. If you want to take advantage of the feature, you will need to re-run a search if it is from an older version.

The next new feature I'd like to mention is Database Manager, which makes managing and updating databases very much easier.

You can do everything in Database Manager that you used to do with Database Maintenance and Database Update, but it is a single, browser-based utility, which makes it a lot easier to use.

Database formats change from time to time. If you've used the old database update script or just downloaded new FASTA files manually, you may have encountered a problem: the accession or description string formats can change, and suddenly the database parse rules don't work anymore. As a result, what should have been a minor update ends up being a debugging session.

The solution we offer is automatically updating the configurations for databases such as SwissProt and NCBInr, based on settings downloaded from the Matrix Science website. This means that, for popular databases, the only thing you need to do is choose which one you want to have enabled on the server, allow updates from the public website, and you're done. If a database format changes, Database Manager will update the configuration before downloading the next new FASTA file.

There are many improvements and I won't have time to go through all of them, but we can look at a few key ones.

The overview page shows all the databases you have configured, whether they are active or not. The databases are divided into two categories: public definitions and local definitions.

Public definition means the configuration comes from the Matrix Science website. These are databases like SwissProt and NCBI nr. Public definitions are automatically kept up to date by periodically synchronising with the Matrix Science website. You can choose which databases are to be updated automatically and how often.

Local definitions are databases that we don't have configuration information for. For example, if you have a database compiled in-house or a single organism genome. You can still use one of the public database configurations as a template, but the parse rules and URLs won't be kept synchronised with the public definitions.

There's a context-sensitive menu on the left that allows you to switch between sections (databases, parse rules) additional actions are shown, such as "Create a new database" here. You can also activate or deactivate several databases at once by ticking the checkboxes and choosing an action from the dropdown menu. If you now click on the h_pylori link...

This is a local definition for a custom database: protein sequences translated from the heliobacter pylori genome. The configuration information is very similar to that displayed in database maintenance, but slightly restructured. For example, the database directory is separated from the FASTA filename pattern. Selecting parse rules is much improved. Previously you had a dropdown list and there was some guesswork and trial and error involved which parse rule would work. Here, when you click on Choose, you will get a table of all possible parse rules and what they return from the FASTA file. So you will be able to see in a glance which parse rules work or which ones almost work. Controls that are not relevant are hidden. For example, if your database doesn't have a reference file, parse rules for the reference file and related taxonomy entries won't be shown. This reduces clutter quite a bit, and there's less uncertainty which fields you need to fill in. Each little question mark expands to inline help text that is related to the data field. For example,

Databases (6)	Copy this definition to use it as a template	
Parse rules (22)	copy this definition to use it as a template.	
Tasks (1)	Name (?)	
h pylori	active databases must be unique. Allowed characters are alphanumerics and	
Сору	h_pylori	-
	Directory (?)	
	/srv/mascot-2.3.02/sequence/h_pylori/current	=
	Performance settings	
	Threads (?)	
	☑ Use memory mapping (?)	
	Lock to memory (?)	
	FASTA file	
	Filename pattern (?)	-
	h_pylori_*.fasta	
	Type (?)	
	○ NA Accession parse rule (?)	
	>[^(]*.\([^)]*\)]	
	Choose	
	Description parse rule (?)	
	>[^(]*.[^)]*. \(.*\)	
	Choose	
	Reference file	
	Enabled (?)	~
Done		

Expanding the help for database name shows which characters are allowed.

Further down the page, the sequence and full-text report functionality is the same as before. You can take the sequence report from the FASTA file and full-text annotations from the reference file (if the reference file is enabled), or you can configure an external source. However, the configuration has been made easier by dividing the three cases into three selections.

Scheduled downloads replaces the db_update.pl script. If you tick the checkbox here, you'll get fields that allow you to choose when to download (say, every first Tuesday of the month) and where to download from. Database Manager will queue up the downloads and do them in the background.

You can see an item called Tasks in the menu here. This is where you can view which downloads are executing at the moment and how complete they are. You can also pause and cancel downloads. If you want to update the files before the scheduled time, just tick the checkbox and select the download action from the dropdown menu. Let's look briefly at EST_human, which is a public definition.

		A
Database Manager	Database details: EST human	
Databases (6)	This definition is linked to the public definition EST human. Read-only fields contain data from the public	
Parse rules (22)	definition, which cannot be edited and are collapsed by default. Copy this definition to create a non-linke	d copy.
Tasks (1)	The public definitions file was last updated Wed May 25 12:44:19 2011.	
EST_human	Name (?)	
Сору	EST_human	
	Directory (?)	_
	/srv/mascot-2.3.02/sequence/EST_human/current	
	Performance settings	
	Threads (?) 4	Ξ
	☑ Use memory mapping (?)	
	Lock to memory (?)	
	FASTA file	
	Reference file	
	Taxonomy data	
	Annotations	
	Sequence report	
	Full-text report	
	Scheduled downloads	
	Enabled (?)	
	Download directory (for temporary files) (?)	
	/srv/mascot-2.3.02/sequence/EST_human/incoming	
Done		
СОТ		<i>(MATRIX)</i> <i>(SCIENCE)</i>

You can see that the configuration looks mostly the same, but most of the sections are collapsed. Almost all of the fields and controls in a public definition are read only. They are set by downloading configuration details from the Matrix Science website. Let's expand the FASTA file configuration.

ASCOT		SCIENCE
Done		
	Annotations	*
	Taxonomy data	
	Reference file	
	>[^]* \(.*\)	
	Description parse rule (?)	
	Accession parse rule (?)	
	• NA	
	EST_human_*.fasta	
	Filename pattern (?)	
	▼FASTA file	
	Lock to memory (?)	
	4 V Lice memory (mention (2))	
	Threads (?)	
	Performance settings	
		=
	/srv/mascot-2.3.02/sequence/EST_human/current	
	Directory (?)	
EST_human	Name (?)	
and and a second se	The public definitions file was last updated Wed May 25 12:44:19 2011.	
Tasks (1)	definition, which cannot be edited and are collapsed by default. Copy this definition to create a non-linke	ed copy.
Darea rulas (22)	— This definition is linked to the public definition EST_human. Read-only fields contain data from the public	
Databases (6)		

There's no way to edit the file name pattern and no way to edit the parse rules. This is deliberate, because one of the main reasons database updates go wrong is because parse rules change. All of the read only fields will be kept synchronised with the Matrix Science website. So, if database formats change, you don't need to do anything as long as you're using one of the public definitions. If you want to have NCBInr on your Mascot server, all you need to do is select it from the list, click a button, and the files will be downloaded and the database kept up to date. That's all!

There are many other new features and bug fixes in Mascot 2.4. One I'd like to mention in closing relates to quantitation of peptides that have multiple modifications on the same site

Quan	titatio	on of I	modifi	ed p	eptid	es	
	NOD w record [A	protein modifi ccession #: 9	cations for mas	s spectro	metry	Help	
Back to list			_	Dime	thyl: H(4	4), C(2)	
Accession #	986		MS Name		Interim Name	Label:13C(6)+Dimethyl	
Description	Dimethyl 13C	i c) ona c label					
Composition	H(4) C(-4) 13	C(6)	Monoisotopic	34.051429	Average	34.0091	
Specificity D	efinition 1						
Site	К		Position	Anywhere	Classification	Isotopic label	
Comment 🤇	SILAC+PTM)					
Notes and R	eferences						
Source	FindMod	Reference	DIMETH				
Source	Misc. URL	Reference	SILAC introduce				
Source	PubMed PMID	Reference	Stable-isotope di	me	for quantitati	ive proteomics	
Curator	glick2	Last Modified	2010-05-14 16:1	9:43		No	
Back to list				SILAC	C: C(-6),	13C(6)	
SCOT	: Mascot	Server 2.4	4 © 2011	Matrix Scier	ice	(MAT) SCIEN	RIX ICE

SILAC, for example, is implemented as modifications, often to K or R. Mascot has only ever allowed one modification per site so, if you have a peptide with an artefactual or post-translational modification on K or R, you have to define combination modifications, such as the one shown here.

Dimethylation adds C2H4, while the SILAC label substitutes six 13C atoms for 12C. So, the net change is H(4) C(-4) 13C(6). This is clumsy. You have to specify and select permutations of modifications and labels, which can quickly bring you up against the limits on the maximum number of variable modifications allowed in a search

In Mascot 2.4, if you use a quantitation method with exclusive modifications and you select a variable modification for the same residue, then Mascot will also test for a match to the double modification. There is no longer a requirement to create these combined modifications and it keeps the search space as small as possible.

I hope that has been a useful preview of some of the new features in Mascot Server 2.4 When will it be released? We're very close. Hopefully, later this summer!