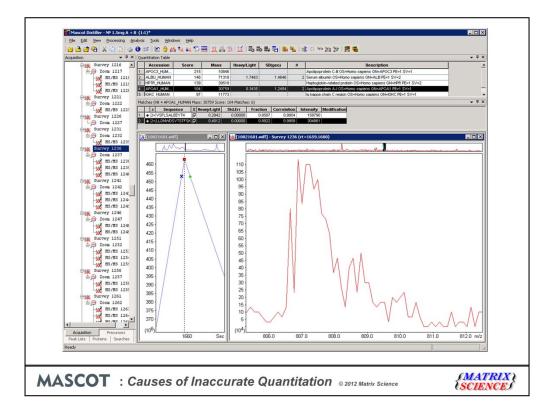
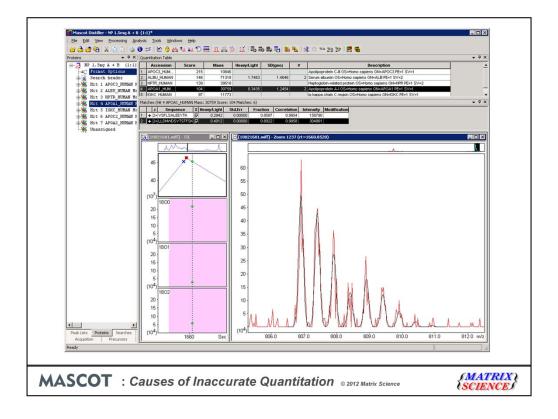
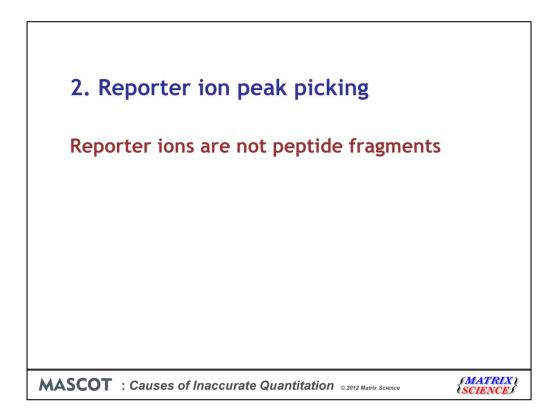
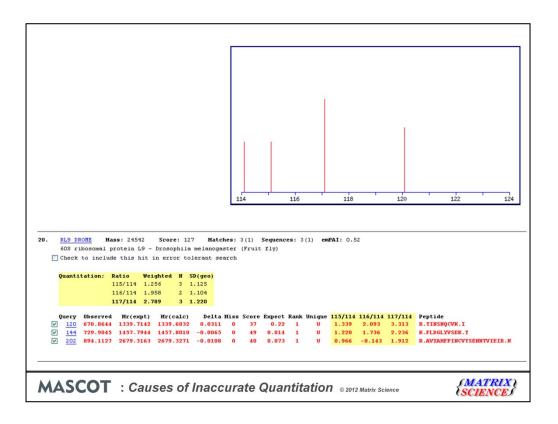

I must make it clear that I am only considering data processing problems

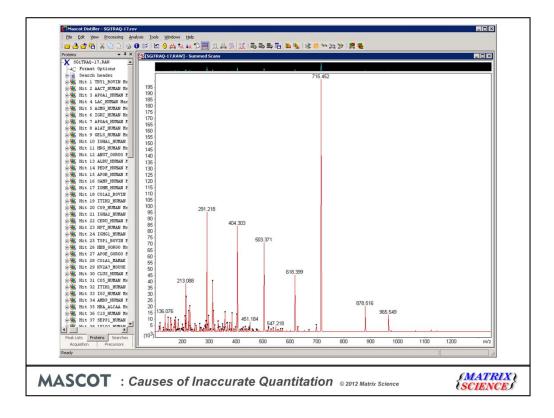

I hardly dare think about all the things that can go wrong at the bench, or when acquiring the mass spec. data


I think most people would agree that you need some degree of isotopic resolution to get reliable quantitation. If you are using a 'classic' ion trap, 3+ and even 2+ peaks may not show any isotopic resolution

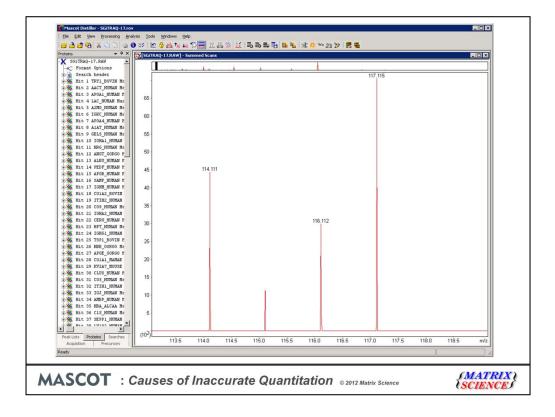

This is some 18O data from a 'classic' trap. This particular peptide gets a strong match. At first glance, the resolution in the precursor region of a survey scan looks pretty good. But, if you look more carefully, these peaks are not from resolved isotope distributions. For a start, there aren't enough peaks. The data have been saved to the raw file as centroids, not profile, as is common practice with traps.


This is a different file where the survey scans have been saved as profile data. Now we can see the true picture. When an unresolved distribution such as this is centroided, it gets broken up into peaks in an arbitrary way. Trying to use such survey scans for any type of quantitation would be difficult, whether saved as profile data or centroids. For 18O labelling, the situation is hopeless because the separation between heavy and light is only 4 Da, and it is essential to deconvolute the distributions.

If we look at an adjacent zoom scan, we can see what the isotope pattern should look like. Signal to noise is still not great, but deconvolution becomes possible when the peaks are fully resolved. So, with zoom scans, even though you might only have a single scan for each precursor, you can get reasonable results from a standard trap.

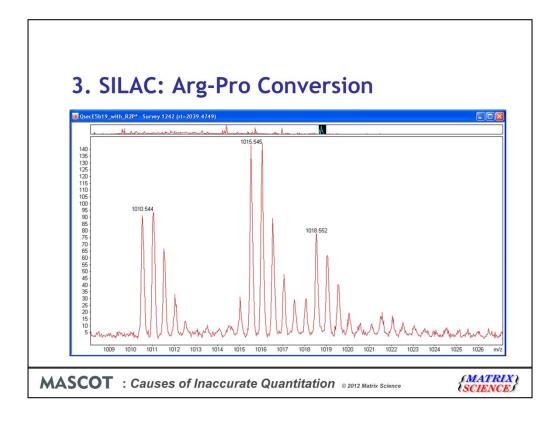


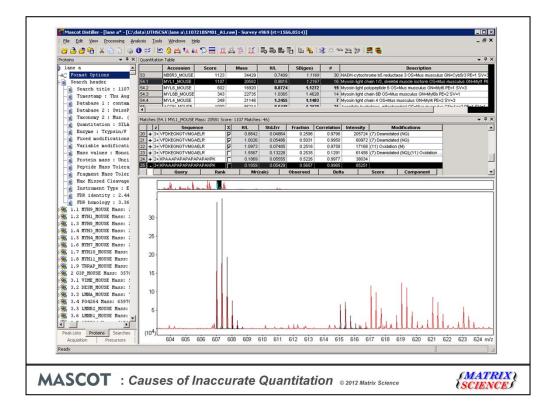
If you are using iTRAQ or TMT, it is very important to understand that the reporter ions are not peptide fragments. Make sure your peak picking software doesn't try to apply some standard de-isotoping algorithm, designed for peptides. This can only distort the relative intensities of reporter ion peaks.

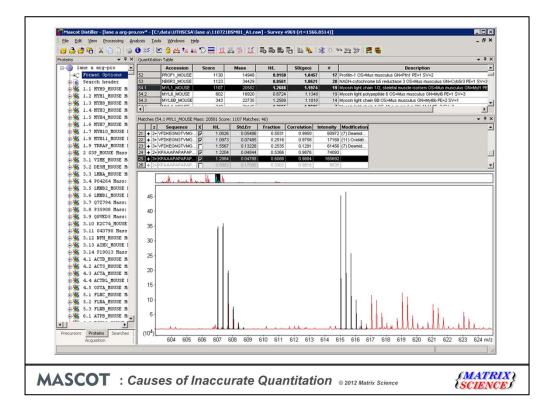


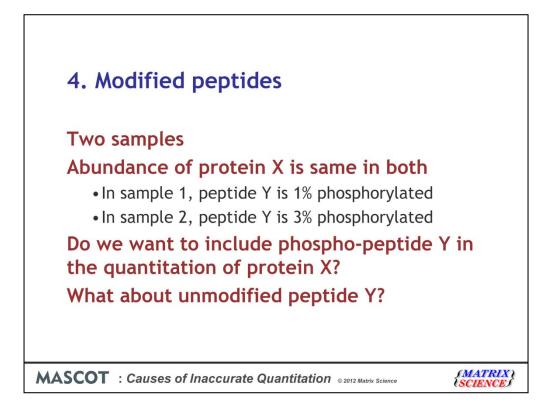
A more serious problem is unreliable peak picking. If you look at a Mascot quantitation report for a reporter ions experiment, you may see large numbers of negative ratios. These are where the peak picking has missed a peak completely, giving a raw intensity of zero. The isotope correction then removes a little more intensity, and donates it to the adjacent peaks, so that the missing peak goes negative. Here, for example, the 116 has been missed.

We decided not to suppress these negative ratios because they are a strong indicator that something is wrong with the peak picking. Usually, the problem is a setting that would be fine for sequence ions, such as 'ignore peaks less than 1% of the base peak intensity'

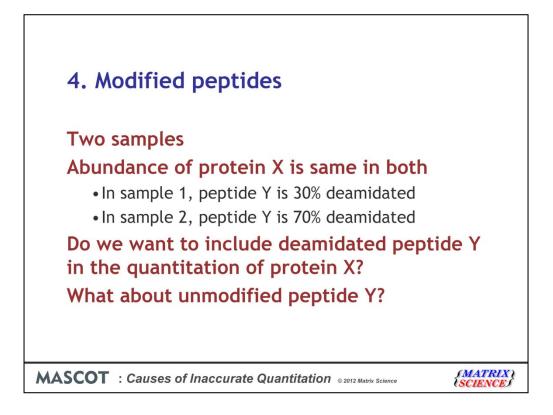

Here, for example, the base peak has an intensity of approx 200,000 widgets. The reporter ions are relatively weak peaks, down at the bottom left

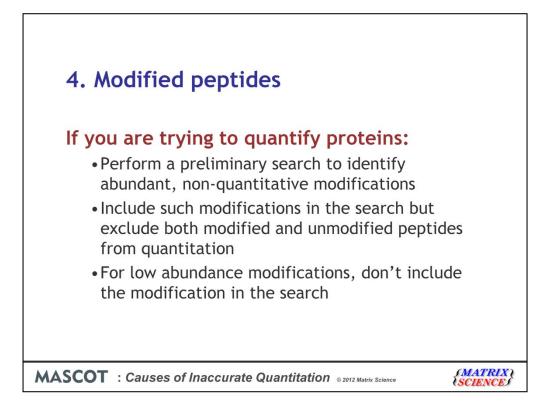

If we zoom in, we can see that the 115 peak has been missed. 1% of the base peak is an intensity of 2000 and the 115 is below this. Not a problem for protein identification but a huge problem for iTRAQ quantitation. So, very important to ensure your peak picking settings are correct for these peaks


SILAC is extremely popular. Not everyone is aware of Arg-Pro conversion. Ong and colleagues reported how cells grown in media containing labelled arginine could yield peptides containing labelled proline. To obtain an accurate ratio, it becomes necessary to account for the label distributed across these additional peaks.

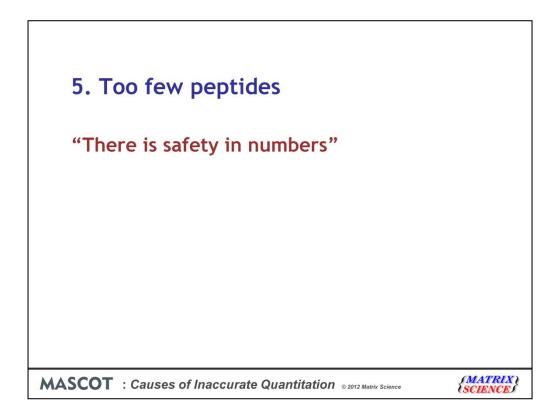

Here is an example for Arginine labelled with 13C(6)15N(4), +10. Some of the label has been incorporated as Proline The proline label is not identical to the arginine label. In this case, it is 13C(5)15N(1), +6. To get an accurate ratio, you need to sum the area of the two heavy distributions.

Not everyone sees this problem, and there are ways to minimise it. But, take a close look at your data from time to time. Here is a case where it is very strong and the ratios are seriously distorted. Without a correction, we only integrate the first heavy distribution, overlayed in black, and the ratio is 0.2 rather than 1

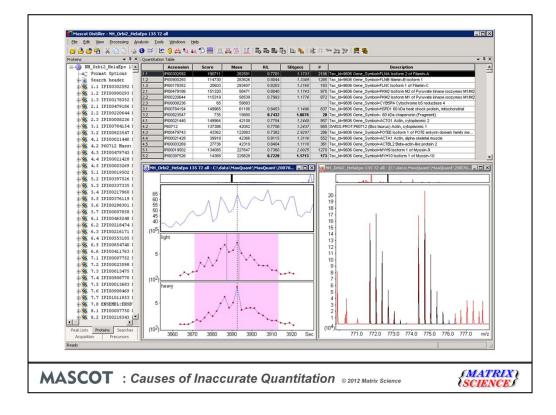

With a correction, we sum all of the distributions and the ratio is closer to those of the nonproline containing peptides


How should modified peptides be handled when we are interested in relative quantitation of proteins? I get the distinct impression that many people don't give this a great deal of thought.

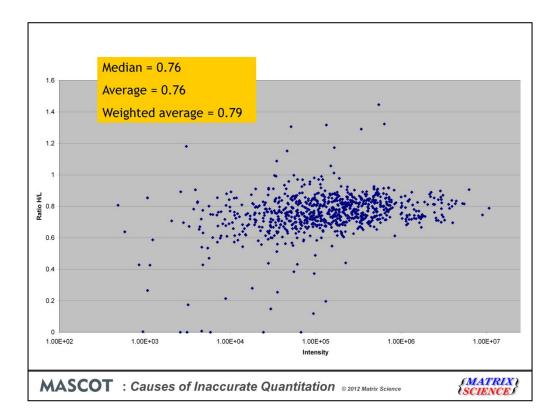
Consider this case. The abundance of the protein is the same in both samples but one of the peptides carries a low level of phosphorylation: 1% in one sample and 3% in the other. Clearly, we want to exclude this peptide because it will give us a ratio of 1:3 rather than 1:1.


Using the unmodified peptide is fine, because we'll get a ratio of 99:97, which in most cases will be indistinguishable from 1:1

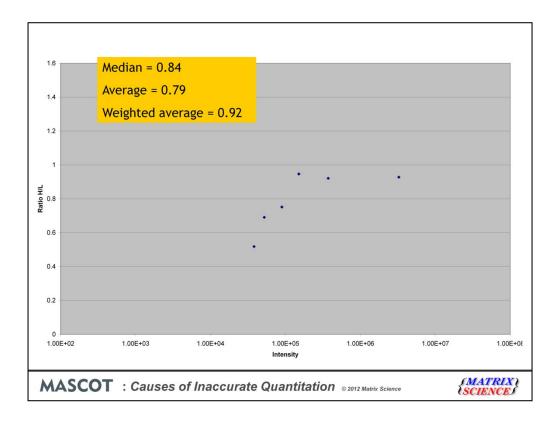
What about a peptide that is more extensively modified? Again, the abundance of the protein is the same in both samples. In one sample, a hypothetical peptide is 30% deamidated, in the other 70% deamidated. We want to exclude this peptide because it will give us a ratio of 3:7 rather than 1:1. Unlike the previous case, the unmodified peptide is no better, giving a ratio of 7:3



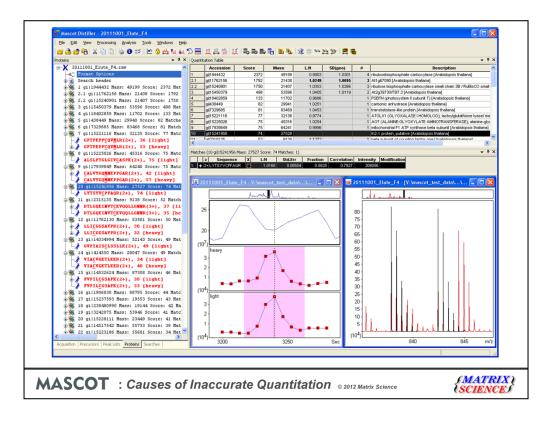
So, for relative quantitation of proteins...



Finally, I suggest the main cause of inaccurate quantitation in a discovery experiment is having insufficient data. Peptide abundance is a surrogate for protein abundance. We assume, or rather hope, that the two are closely coupled. This only becomes a safe assumption when you look at a good sized population of peptides, and eliminate the outliers.


One of the main reasons for peptide abundance being different from protein abundance was just discussed: modified peptides. For post-digest labelling, another factor might be the enzyme digest conditions.

Here's a very nice SILAC data set, containing over 4000 proteins in the minimal list and some of these have over a thousand peptide matches. High mass resolution and accuracy



Here is a plot of 838 peptide ratios for a protein near the top of the list. The y axis should really be logarithmic, but a linear scale makes it easier to visualise the data. Possibly the extreme measurements are outliers caused by some failure in peak picking or chromatogram integration. Possibly they are peptides that have been misassigned. Possibly they are modified or processed in some way that makes them not representative of the abundance of the protein. In doesn't really matter because, when you have this many measurements, you can see where the centre of gravity is. Somewhere just under 0.8, yes? It doesn't matter whether you take the mean or the weighted mean or the median ... we still get the same ratio.

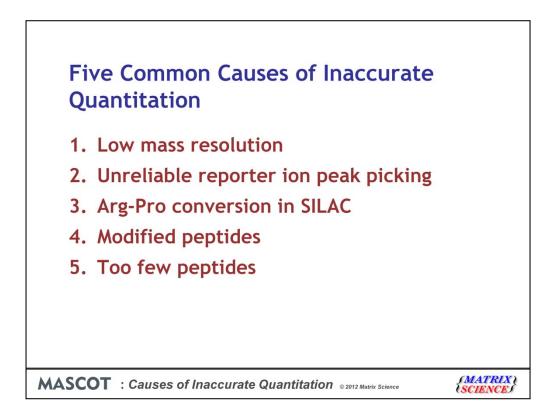
Go further down the list, to the low abundance proteins, where you have handful of measurements. You don't need statistics to tell you that this is a less reliable measurement. For these 6 ratios, the average and weighted average are quite different. When people ask me which is the 'best' way to calculate the protein ratio from the peptide ratio, I'm tempted to reply that, if it makes much difference, you need more data.

The really dangerous situation is when these 6 peptide ratio measurements are all for the same peptide sequence, or maybe two sequences. Then it becomes a lottery.

For this reason, I'm not a fan of methods that focus on a small number of peptides for each protein. Methods such as ICAT or COFRADIC. The idea is to simplify the problem. But I feel they throw out the baby with the bathwater.

This is an ICAT example. The data quality is beautiful. High mass resolution. Clean and symmetrix XIC peaks. But, with only one peptide for most proteins, I simply don't feel confident that we are getting reliable protein quantitation.

		A						
Description	H/L	SD(geo)	# match	# seq	H/L	SD(geo)	# match	# seq
PKM2 Isoform M2 of Pyruvate kinase isozymes M1/M2	0.804	1.174	975	43	0.8385	1.142	107	
PKM2 Isoform M1 of Pyruvate kinase isozymes M1/M2	0.7993	1.178	872	41	0.8061	1.059	4	
TUBB2C Tubulin beta-2C chain	0.7437	1.156	777	24	0.821	1.066	28	
TUBB4 Tubulin beta-4 chain	0.7325	1.152				1.062	23	
TUBB2A Tubulin beta-2A chain	0.7292	1.157	629	22	0.7062	1.174	. 7	
AHNAK Neuroblast differentiation- associated protein	0.8676	1.29	1154	152	0.8577	1.331	752	12
clone CTONG2004264, moderately similar to AHNAK	0.88	1.198	403	29	0.9462		1	
CLTC Isoform 1 of Clathrin heavy	0.7672	1.263	725	64	0.75	1.159	493	4
CLTCL1 Isoform 1 of Clathrin heavy chain 2	0.7996	3.112	219	15	0.000806	46.13	7	
PRO2051	0.8098	1.147	17	3	0.6116		1	
cDNA FLJ54957, highly similar to Transketolase	0.7896	1.143	859	29	0.8107	1.203	24	
cDNA FLJ56274, highly similar to Transketolase	0.7893	1.14	835	28			0	
cDNA FLJ53217, highly similar to Transketolase	0.7814	1.143	730	28	0.8422	1.029	4	
	kinase isozymes M1/M2 PKM2 Isoform M1 of Pyruvate kinase isozymes M1/M2 TUBB2C Tubulin beta-2C chain TUBB2A Tubulin beta-2C chain TUBB2A Tubulin beta-2A chain AHNAK Neuroblast differentiation- associated protein clone CTONG2004264, moderately similar to AHNAK CLTC Isoform 1 of Clathrin heavy chain 1 CLTCL1 Isoform 1 of Clathrin heavy chain 2 PRO2051 cDNA FLJ54957, highly similar to Transketolase cDNA FLJ56274, highly similar to Transketolase cDNA FLJ53217, highly similar to	PKM2 Isoform M2 of Pyruvate kinase isozymes M1/M2 0.804 PKM2 Isoform M1 of Pyruvate kinase isozymes M1/M2 0.7993 TUBB2C Tubulin beta-2C chain TUBB2A Tubulin beta-4 chain TUBB2A Tubulin beta-2A chain 0.7437 AHNAK Neuroblast differentiation- associated protein clone CTONG2004264, 0.8676 CLTC Isoform 1 of Clathrin heavy chain 1 0.7672 CLTCL Isoform 1 of Clathrin heavy chain 2 0.7996 PRO2051 0.8098 cDNA FLJ54957, highly similar to Transketolase cDNA FLJ53217, highly similar to 0.7894	DescriptionH/LSD(geo)PKM2 Isoform M2 of Pyruvate kinase isozymes M1/M20.8041.174PKM2 Isoform M1 of Pyruvate kinase isozymes M1/M20.79931.178TUBB2C Tubulin beta-2C chain TUBB2A Tubulin beta-4 chain TUBB2A Tubulin beta-2A chain0.74371.156TUBB2A Tubulin beta-2C chain UBB2A Tubulin beta-2A chain0.72921.157AHNAK Neuroblast differentiation- associated protein clone CTONG2004264, moderately similar to AHNAK0.86761.29CLTC Isoform 1 of Clathrin heavy chain 1 PRO20510.76721.263CLTCL Isoform 1 of Clathrin heavy chain 2 PRO20510.78961.143cDNA FLJ54957, highly similar to Transketolase cDNA FLJ56274, highly similar to DNA FLJ53217, highly similar to DNA FLJ53217, highly similar to0.78141.143	Description H/L SD(geo) # match PKM2 Isoform M2 of Pyruvate kinase isozymes M1/M2 0.804 1.174 975 PKM2 Isoform M1 of Pyruvate kinase isozymes M1/M2 0.7993 1.178 872 TUBB2C Tubulin beta-2C chain TUBB2A Tubulin beta-2A chain 0.7437 1.156 777 AHNAK Neuroblast differentiation- associated protein clone CTONG2004264, 0.88676 1.29 1154 CLTC Isoform 1 of Clathrin heavy chain 1 0.7672 1.263 725 CLTCL Isoform 1 of Clathrin heavy chain 2 0.8098 1.147 17 CDNA FLJ54957, highly similar to Transketolase cDNA FLJ56274, highly similar to cDNA FLJ53217, highly similar to 0.7814 1.143 730	Description H/L SD(geo) # match # seq PKM2 Isoform M2 of Pyruvate kinase isozymes M1/M2 0.804 1.174 975 43 PKM2 Isoform M1 of Pyruvate kinase isozymes M1/M2 0.7993 1.178 872 41 TUBB2C Tubulin beta-2C chain TUBB2A Tubulin beta-2A chain 0.7437 1.156 777 24 AHNAK Neuroblast differentiation- associated protein clone CTONG2004264, moderately similar to AHNAK 0.8676 1.29 1154 152 CLTC Isoform 1 of Clathrin heavy chain 1 CLTCL Isoform 1 of Clathrin heavy chain 2 PRO2051 0.7672 1.263 725 644 CLTCA Isoform 1 of Clathrin heavy chain 2 PRO2051 0.8098 1.147 17 33 cDNA FLJ54957, highly similar to Transketolase cDNA FLJ56274, highly similar to cDNA FLJ53217, highly similar to 0.7814 1.143 730 28	Description H/L SD(geo) # match # seq H/L PKM2 Isoform M2 of Pyruvate kinase isozymes M1/M2 0.804 1.174 975 43 0.8385 PKM2 Isoform M1 of Pyruvate kinase isozymes M1/M2 0.7993 1.178 872 41 0.8061 TUBB2C Tubulin beta-2C chain TUBB2A Tubulin beta-4 chain UBB2A Tubulin beta-2A chain 0.7437 1.156 777 24 0.821 AHNAK Neuroblast differentiation- associated protein clone CTONG2004264, moderately similar to AHNAK 0.88676 1.29 1154 152 0.8577 CLTC Isoform 1 of Clathrin heavy chain 1 0.7672 1.263 725 64 0.75 CLTC Isoform 1 of Clathrin heavy chain 2 0.8098 1.147 17 3 0.6116 CDNA FLJ54957, highly similar to Transketolase cDNA FLJ56274, highly similar to cDNA FLJ53217, highly similar to 0.7814 1.143 730 28 0.8422	Description H/L SD(geo) # match # seq H/L SD(geo) PKM2 Isoform M2 of Pyruvate kinase isozymes M1/M2 0.804 1.174 975 443 0.8385 1.142 PKM2 Isoform M1 of Pyruvate kinase isozymes M1/M2 0.7993 1.178 872 441 0.8061 1.059 TUBB2C Tubulin beta-2C chain TUBB2A Tubulin beta-4 chain TUBB2A Tubulin beta-2A chain 0.7437 1.156 777 244 0.821 1.066 AHNAK Neuroblast differentiation- associated protein clone CTONG2004264, moderately similar to AHNAK 0.886 1.198 403 29 0.9462 1.159 CLTC Isoform 1 of Clathrin heavy chain 1 CLTCL Isoform 1 of Clathrin heavy chain 2 PRO2051 0.7672 1.263 725 644 0.75 1.159 CDNA FLJ54957, highly similar to Transketolase cDNA FLJ54957, highly similar to DTRANS (1.143 859 29 0.8107 1.203 CDNA FLJ56274, highly similar to CDNA FLJ53217, highly similar to 0.7814 1.143 730 28 0.8422 1.029	Description H/L SD(geo) # match # seq H/L SD(geo) # match PKM2 Isoform M2 of Pyruvate kinase isozymes M1/M2 0.804 1.174 975 443 0.8385 1.142 107 PKM2 Isoform M1 of Pyruvate kinase isozymes M1/M2 0.7993 1.178 872 441 0.8061 1.059 4 TUBB2C Tubulin beta-2C chain TUBB2A Tubulin beta-4 chain TUBB2A Tubulin beta-2A chain 0.7437 1.156 777 244 0.821 1.066 28 AHNAK Neuroblast differentiation- associated protein 0.8676 1.29 1154 152 0.8577 1.331 752 CLTC Isoform 1 of Clathrin heavy chain 1 0.7996 3.112 219 155 0.000806 46.13 7 PRO2051 0.8098 1.147 17 3 0.6116 1 cDNA FLJ54957, highly similar to Transketolase cDNA FLJ56274, highly similar to 0.7893 1.14 855 28 0.8107 1.203 24


A related question is whether it's a good idea to restrict quantitation to "unique peptide". That is, peptides that are not shared with other proteins. Here are a few examples from a large SILAC data set. There is solid evidence for the presence of all of these proteins from high scoring, unique peptides. But, when we look at the peptides that are quantified, a very high proportion are shared between isoforms. For example, these tubulins. Each have some 6 or 7 hundred matches to twenty odd distinct sequences. But, almost all of these are shared. When eliminated, we end up with just 1 distinct sequence each for two of the tubulins. Too few for any kind of reliable measurement.

Does removal of the shared matches reveal any up or down regulation? You may think you see one here, the H/L for this Clathrin goes from 0.8 to near zero. However, note that it is down to only 7 matches to two distinct sequences. If we look at what these are

Sequence	Incl.	H/L	Std.Err.	Fraction	Correlation	Intoncity	Modifie	ations	6	
AQILPVR	X		0.000062	0.3247		5.87E+04				-
AQILPVR	X	0.000146		0.4353		3.08E+04				-
AQILPVR	X	0.000128	0.000002	0.3366	0.9888				N-term)	-
AQILPVR	X	0.000543	0.03647	0.3159	0.9813				N-term)	
AQILPVR	X	0.002587	0.000374	0.3058	0.9835	1.91E+04				1
QNLQLCVQVASK	Х	0.948	0.08599	0.6908		5.93E+04				
QNLQLCVQVASK	Х	0.8416	0.1362	0.3082	0.9818	4.76E+04				
ASCOT : Caus	es of	Inaccu	rate Q	uantit	ation ©2	2012 Matrix S	cience		5	(MATRI SCIENC

Matches to one of the sequences are both in the 0.8 ballpark. The other sequence is post-translationally modified, which makes it unreliable for quantitation of the protein.

It doesn't always make sense to limit discovery quantitation to unique peptides. Maybe better to study cases where the variance of the measurements is larger than expected and see whether there is evidence for the peptides belonging to two populations

To summarise