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Three ways to use mass spectrometry 
data for protein identification

1.Peptide Mass Fingerprint
A set of peptide molecular masses from an 
enzyme digest of a protein

There are three proven ways of using mass spectrometry data for protein identification. The 
first of these is known as a peptide mass fingerprint. This was the original method to be 
developed, and uses the molecular weights of the peptides resulting from digestion of a 
protein by a specific enzyme.
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Peptide mass fingerprinting can only be used with a pure protein or a very simple mixture. 
The starting point will often be a spot off a 2D gel. The protein is digested with an enzyme 
of high specificity; usually trypsin, but any specific enzyme can be used. The resulting 
mixture of peptides is analysed by mass spectrometry. This yields a set of molecular mass 
values, which are searched against a database of protein sequences using a search engine. 
For each entry in the protein database, the search engine simulates the known cleavage 
specificity of the enzyme, calculates the masses of the predicted peptides, and compares the 
set of calculated mass values with the set of experimental mass values. Some type of 
scoring is used to identify the entry in the database that gives the best match, and a report is 
generated. I will discuss the subject of scoring in detail later.
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If the mass spectrum of your peptide digest mixture looks as good as this, and it is a single 
protein, and the protein sequence or something very similar is in the database, your chances 
of success are very high. 
Before searching, the spectrum must be reduced to a peak list: a set of mass and intensity 
pairs, one for each peak.
In a peptide mass fingerprint, it is the mass values of the peaks that matter most. The peak 
area or intensity values are a function of peptide basicity, length, and several other physical 
and chemical parameters. There is no particular reason to assume that a big peak is 
interesting and a small peak is less interesting. The main use of intensity information is to 
distinguish signal from noise.
Mass accuracy is important, but so is coverage. Better to have a large number of mass 
values with moderate accuracy than one or two mass values with very high accuracy.
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PMF Servers on the Web
Aldente (Phenyx) 

• http://www.expasy.org/tools/aldente/
Mascot

• http://www.matrixscience.com/search_form_select.html
MassSearch

• http://cbrg.inf.ethz.ch/Server/MassSearch.html
Mowse

• http://srs.hgmp.mrc.ac.uk/cgi-bin/mowse
MS-Fit (Protein Prospector)

• http://prospector.ucsf.edu/ucsfhtml4.0/msfit.htm
PepMAPPER

• http://wolf.bms.umist.ac.uk/mapper/
PeptideSearch

• http://www.mann.embl-
heidelberg.de/GroupPages/PageLink/peptidesearchpage.html

Profound (Prowl)
• http://bioinformatics.genomicsolutions.com/service/prowl/profound.html

XProteo
• http://xproteo.com:2698/ 

There is a wide choice of PMF servers on the web. I hope this is a complete list, in 
alphabetical order. If I am missing a public server, please let me know, and I will add it to 
the list. 
Many other PMF programs have been described in the literature. Most packages are either 
available for download from the web or are commercial products.
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Search
Parameters

• database
• taxonomy
• enzyme
• missed 

cleavages
• fixed 

modifications
• variable 

modifications
• protein MW
• protein pI
• estimated mass 

measurement 
error

This is the search form for MS-Fit, part of Karl Clauser’s Protein Prospector package. 
Besides the MS data, a number of search parameters are required. Some search engines 
require fewer parameters, others require more. I’ll be discussing common search parameters 
in detail in the practical tips section of this talk.
To perform the search, you paste your peak list into the search form, or upload it as a file, 
provide values for the search parameters, and press the submit button.
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A short while later, you will receive the results. The reports shown here come from 
PeptideSearch, Mascot, MS-Fit, and Profound.
A peptide mass fingerprint search will almost always produce a list of matching proteins, 
and something has to be at the top of that list. So, the problem in the early days of the 
technique was how to tell whether the top match was “real”, or just the top match … that is, 
a false positive.
There have been various attempts to deal with this problem, which I will describe when we 
come to discuss scoring.
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1993: Vintage Year for PMF

Henzel, W. J., Billeci, T. M., Stults, J. T., Wong, S. C., 
Grimley, C. and Watanabe, C. (1993). Proc Natl Acad Sci USA 
90, 5011-5.
James, P., Quadroni, M., Carafoli, E. and Gonnet, G. (1993). 
Biochem Biophys Res Commun 195, 58-64.
Mann, M., Hojrup, P. and Roepstorff, P. (1993). Biol Mass 
Spectrom 22, 338-45.
Pappin, D. J. C., Hojrup, P. and Bleasby, A. J. (1993). Curr. 
Biol. 3, 327-32.
Yates, J. R., 3rd, Speicher, S., Griffin, P. R. and Hunkapiller, 
T. (1993). Anal Biochem 214, 397-408.

On a historical note, the discovery of peptide mass fingerprinting was unusual in that it 
wasn’t just one or two groups that first demonstrated the feasibility of the technique. In 
1993, no less than five groups independently published descriptions of the method. Bill 
Henzel and colleagues at Genentech, Peter James’s group at ETH Zurich, Matthias Mann’s 
lab at EMBL Heidelberg, Darryl Pappin’s group at ICRF London, and John Yates et al. at U 
Washington.
Clearly, an idea whose time had come.
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Henzel, W. J., Watanabe, C., Stults, J. T., J. Am. Soc. Mass Spectrom. 2003, 
14, 931-942.

If you want to learn more about how all of this came about, I strongly recommend this 
review by the Genentech group. They discuss the history and the methodology in a very 
readable style.
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Peptide Mass Fingerprint

Fast, simple analysis
High sensitivity
Need database of protein sequences

•not ESTs or genomic DNA

Sequence must be present in database
•or close homolog

Not good for mixtures
•especially a minor component.

One of the strengths of PMF is that it is an easy experiment that can be performed using just about any mass 
spectrometer. The whole process is readily automated and MALDI instruments, in particular, can churn out 
high accuracy PMF data at a very high rate.
In principal, it is a sensitive technique because you are analysing all of the peptides from the digest. It doesn’t 
matter too much if a small part of the protein fails to digest or some of the peptides are insoluble or don’t fly 
very well.
One of the limitations is that you need a database of proteins or nucleic acid sequences that are equivalent to 
proteins, e.g. mRNAs. In most cases, you will not get satisfactory results from an EST database, where most of 
the entries correspond to protein fragments, or genomic DNA, where there is a continuum of sequence, 
containing regions coding for multiple proteins as well as non-coding regions.
This is because the statistics of the technique rely on the set mass values having originated from a defined 
protein sequence. If multiple sequences are combined into a single entry, or the sequence is divided between 
multiple entries, the numbers may not work.
If the protein sequence, or a near neighbour, is not in the database, the method will fail. It is not a method for 
protein characterisation, only for identification.
The most important limitation concerns mixtures. If the data quality is good, then one or two, possibly three, 
major components can be identified. But if the data are poor, it can be difficult to get any match at all out of a 
mixture, and it is never possible to identify a minor component with any confidence. This is the Achilles' heel 
of PMF.
To identify proteins from mixtures reliably, it is necessary to work at the peptide level. That is, using MS/MS 
data.
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The experimental workflow for database matching of MS/MS data is similar to that for 
PMF, but with an added stage of selectivity and fragmentation.
Again, we start with protein, which can now be a single protein or a complex mixture of 
proteins. We use an enzyme such as trypsin to digest the proteins to peptides. We select the 
peptides one at a time using the first stage of mass analysis. Each isolated peptide is then 
induced to fragment, possibly by collision, and the second stage of mass analysis used to 
collect an MS/MS spectrum.
Because we are collecting data from isolated peptides, it makes no difference whether the 
original sample was a mixture or not. We identify peptide sequences, and then try to assign 
them to one or more protein sequences. One consequence is that, unless a peptide is unique 
to one particular protein, there may be some ambiguity as to which protein it should be 
assigned to.
For each MS/MS spectrum, we use software to try and determine which peptide sequence in 
the database gives the best match. This will involve simulating the cleavage specificity of 
the enzyme, followed by calculation of the mass values we expect to result from the gas 
phase fragmentation of the peptide. 
Unlike a peptide mass fingerprint, use of a specific enzyme is not essential. By looking at 
all possible sub-sequences of each entry that fit the precursor mass, it is possible to match 
peptides when the enzyme specificity is unknown, such as endogenous peptides.
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H+

Roepstorff, P. and Fohlman, J. (1984). Proposal for a common nomenclature for 
sequence ions in mass spectra of peptides. Biomed Mass Spectrom 11, 601.

Database matching of MS/MS data is only possible because peptide molecular ions 
fragment at preferred locations along the backbone. In many instruments, the major peaks in 
an MS/MS spectrum are b ions, where the charge is retained on the N-terminus, and y ions, 
where the charge is retained on the C-terminus. 
However, this depends on the ionisation technique, the mass analyser, and the peptide 
structure. Electron capture dissociation, for example, produces predominantly c and z ions.
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[C]+[M]-NH2z

y-H2Oy°

y-NH3y*

[C]+[M]+Hy

[C]+[M]+CO-Hx

z - partial side chainw

y - complete side chainv

a - partial side chaind

[N]+[M]+NH2c

b-H2Ob°

b-NH3b*

[N]+[M]-Hb

a-H2Oa°

a-NH3a*

[N]+[M]-CHOa

Neutral Mr
Ion
Type

Internal Immonium

Sequence Ions

Satellite Ions

Papayannopoulos, IA, The interpretation of collision-
induced dissociation tandem mass spectra of peptides.
Mass Spectrom. Rev., 14(1) 49-73 (1995).

Peptide fragmentation is rarely a clean process, and the spectrum will often show significant 
peaks from side chain cleavages and internal fragments, where the backbone has been 
cleaved twice.
This slide shows the most common structures and includes a “ready reckoner” for fragment 
ion masses. N is mass of the N-terminal group, H for free amine. C is the mass of the C-
terminal group, OH for free acid. M is the sum of the residue masses
The best introduction to peptide dissociation is still this review by Ioannis Papayannopoulos
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Three ways to use mass spectrometry 
data for protein identification

1. Peptide Mass Fingerprint
A set of peptide molecular masses from an 
enzyme digest of a protein

2. Sequence Query
Mass values combined with amino acid sequence 
or composition data

Which brings us to the second method of using mass spectrometry data for protein 
identification: a sequence query in which mass information is combined with amino acid 
sequence or composition data. The most widely used approach in this category is the 
sequence tag, developed by Matthias Mann and Matthias Wilm at EMBL.
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Mann, M. and Wilm, M., Error-tolerant identification of peptides in sequence 
databases by peptide sequence tags. Anal. Chem. 66 4390-9 (1994).

In a sequence tag search, a few residues of amino acid sequence are interpreted from the 
MS/MS spectrum.
Even when the quality of the spectrum is poor, it is often possible to pick out four clean 
peaks, and read off three residues of sequence. In a sequence homology search, a triplet 
would be worth almost nothing, since any given triplet can be expected to occur by chance 
many times in even a small database.
What Mann and Wilm realised was that this very short stretch of amino acid sequence 
might provide sufficient specificity to provide an unambiguous identification if it was 
combined with the fragment ion mass values which enclose it, the peptide mass, and the 
enzyme specificity.
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1489.430 tag(650.213,GWSV,1079.335)

Picking out a good tag is not trivial, and often involves making judgements based on 
experience. In this spectrum, we can see a promising four residue tag.
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Sequence Query Servers on the Web

Mascot
• http://www.matrixscience.com/search_form_select.html

MS-Seq (Protein Prospector)
• http://prospector.ucsf.edu/ucsfhtml4.0/msseq.htm

MultiIdent (TagIdent, etc.)
• http://www.expasy.org/tools/multiident/

PeptideSearch
• http://www.mann.embl-

heidelberg.de/GroupPages/PageLink/peptidesearchpage.h
tml

Spider 
• http://proteome.sharcnet.ca:8080/spider.htm

As with PMF, I have limited my list to sequence query servers that are publicly available on 
the web. If I have missed any, please let me know. My email address is on the first slide.
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For my example, I entered the tag shown earlier into the original PeptideSearch program at 
EMBL. As with a PMF, several search parameters are required, such as the database to be 
searched and an estimate of the mass accuracy.
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This is the result report from the search. There are 9 hits, but the peptide is the same in all 
cases: LQGIVSWGSGCAQK from bovine trypsinogen.
Although you don’t get a score from this particular search engine, in my experience, you are 
on very safe ground accepting any match to trypsin , keratin, or BSA ;-)
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Sequence Tag

Rapid search times
•Essentially a filter

Error tolerant
•Match peptide with unknown modification or SNP

Requires interpretation of spectrum
•Usually manual, hence not high throughput

Tag has to be called correctly
•Although ambiguity is OK

2060.78 tag(977.4,[Q|K][Q|K][Q|K]EE,1619.7).

A sequence tag search can be rapid, because it is simply a filter on the database.
Without doubt, the most important advantage of this approach is the so-called “error 
tolerant” mode. This consists of relaxing the specificity, usually by removing the peptide 
molecular mass constraint. When this is done, the tag is effectively allowed to float within 
the candidate sequence, so that a match is possible even if there is a difference in the 
calculated mass to one side or the other of the tag. This is one of the few ways of getting a 
match to a peptide when there is an unsuspected modification or a variation in the primary 
amino acid sequence.
Tags can be called by software. But, in most cases, they are called manually, which requires 
time and skill. 
If the tag is not correct, then no match will be found. With some search engines, ambiguity 
is OK, as long as it is recognised and the query is formulated correctly. Obviously, I=L and, 
in most cases, Q=K and F=MetOx. Software or a table of mass values can help identify the 
more common ambiguities.
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Sequence Tag / Sequence Homology
MultiTag

Sunyaev, S., et. al., MultiTag: Multiple error-tolerant sequence tag search for the 
sequence-similarity identification of proteins by mass spectrometry, Anal. Chem. 75 
1307-1315 (2003).

GutenTag
Tabb, D. L., et. al., GutenTag: High-throughput sequence tagging via an empirically 
derived fragmentation model, Anal. Chem. 75 6415-6421 (2003).

MS-Blast
Shevchenko, A., et al., Charting the proteomes of organisms with unsequenced
genomes by MALDI-quadrupole time of flight mass spectrometry and BLAST homology 
searching, Analytical Chemistry 73 1917-1926 (2001)

FASTS, FASTF
Mackey, A. J., et al., Getting More from Less - Algorithms for rapid protein 
identification with multiple short peptide sequences, Molecular & Cellular Proteomics 
1 139-47 (2002)

OpenSea
Searle, B. C., et al., High-Throughput Identification of Proteins and Unanticipated 
Sequence Modifications Using a Mass-Based Alignment Algorithm for MS/MS de Novo 
Sequencing Results, Anal. Chem. 76 2220-30 (2004)

CIDentify
Taylor, J. A. and Johnson, R. S., Sequence database searches via de novo peptide 
sequencing by tandem mass spectrometry, Rapid Commun. Mass Spectrom. 11 1067-75 
(1997)

Sequence queries can be extremely powerful. These references are a good starting point if 
you are interested in learning more about the potential of combining mass and sequence 
information.
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Three ways to use mass spectrometry 
data for protein identification

1. Peptide Mass Fingerprint
A set of peptide molecular masses from an 
enzyme digest of a protein

2. Sequence Query
Mass values combined with amino acid sequence 
or composition data

3. MS/MS Ions Search
Uninterpreted MS/MS data from a single peptide 
or from a complete LC-MS/MS run

Which brings us to the third category: Searching uninterpreted MS/MS data from a single 
peptide or from a complete LC-MS/MS run. That is, using software to match lists of 
fragment ion mass and intensity values, without any manual sequence calling.



24

Eng, J. K., McCormack, A. L. and 
Yates, J. R., 3rd., An approach to 
correlate tandem mass spectral 
data of peptides with amino acid 
sequences in a protein database. J. 
Am. Soc. Mass Spectrom. 5 976-89 
(1994)

SEQUEST

This approach was pioneered by John Yates and Jimmy Eng at the University of 
Washington, Seattle. They used a cross correlation algorithm to compare an experimental 
MS/MS spectrum against spectra predicted from peptide sequences from a database. Their 
ideas were implemented as the Sequest program.
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MS/MS Ions Search Servers on the Web
Mascot

• http://www.matrixscience.com/search_form_select.html
MS-Tag (Protein Prospector)

• http://prospector.ucsf.edu/ucsfhtml4.0/mstagfd.htm
Omssa

• http://pubchem.ncbi.nlm.nih.gov/omssa/index.htm
PepFrag (Prowl)

• http://prowl.rockefeller.edu/PROWL/pepfragch.html
Phenyx

• http://www.phenyx-ms.com/index.html
Sequest

• N/A
Sonar (Knexus)

• http://bioinformatics.genomicsolutions.com/service/prowl/sonar.html
X!Tandem (The GPM)

• http://thegpm.org/TANDEM/index.html
XProteo

• http://xproteo.com:2698/

There is a wide choice of search engines on the web for performing searches of 
uninterpreted MS/MS data. Funnily enough, Sequest is not one of them, but I’ve listed it 
anyhow because it was the original. Again, if I’ve missed one, please advise.
As with a peptide mass fingerprint, the starting point is a peak list. There are several 
different formats for MS/MS peak lists, and this may constrain your choice of search engine 
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This is the search form for X!Tandem, from Ron Beavis and colleagues. This particular 
form is for searching human sequences, and Ron has adopted this useful pictorial method of 
choosing the correct organism.
As before, you specify the database, mass accuracy, modifications to be considered, etc., 
and associate the peak list file with the search form.
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The results from this type of search tend to be more complicated to report. This is because 
the results usually represent a number of MS/MS spectra, rather than a single spectrum. 
Hence, there is an additional dimension to the data.
For each spectrum, there may be multiple possible peptide matches. Each peptide match 
may be assignable to multiple proteins. This makes the results more difficult to represent in 
two dimensions and leads to a wide variety of reporting styles. The examples shown here 
are from Sequest, X!Tandem, Omssa, and XProteo.
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MS/MS Ions Search

Easily automated for high throughput
Can get matches from marginal data
Can be slow

No enzyme
Many variable modifications
Large database
Large dataset

MS/MS is peptide identification
•Proteins by inference.

Searching of uninterpreted MS/MS data is readily automated for high throughput work. 
Most “proteomics pipelines” use this approach. 
It offers the possibility of getting useful matches from spectra of marginal quality, where it 
would not be possible to call a reliable sequence tag.
On the down side, such searches can be slow. Particularly if performed without enzyme 
specificity or with several variable modifications.
Finally, always remember that it is peptides that are being identified, not proteins. 
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MS/MS matching identifies peptides, 
not proteins

Assigning peptide matches to protein hits can be 
arbitrary

Protein A 
Protein B
Protein C

Peptide 1 Peptide 2 Peptide 3

Peptide 1 Peptide 3

Peptide 2

Principal of parsimony / Occam’s razor prefers 
Protein A

Imagine that we have three peptide matches, which can be assigned to three 
proteins, as illustrated here. Do we have evidence for all three proteins, or just one?
Many reports apply the so-called principal of parsimony, also called Occam’s razor. 
This chooses the minimum number of proteins that can account for the observed 
peptides. Hence, most search engines will report that the sample contained protein 
A. They may add that proteins B and C contain sub-sets of the same peptides.
This is certainly a reasonable decision, but there is no guarantee that it is correct. It 
is possible that the sample actually did contain just proteins B and C. Another thing 
to watch for is the possibility that peptide 2 is a very weak match, maybe spurious. 
If so, then there is nothing to choose between Proteins A and B.
This ambiguity is exacerbated by shotgun proteomics or MudPIT, where the 
proteins from a cell lysate are digested to peptides without any prior fractionation or 
separation.
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20 to 200 mass 
values

20 to 200 mass 
values

Information 
content

Residue level 
characterisation

Shotgun protein 
identification

Unique 
strength

Fragmentation 
channels

Protein lengthMajor 
unknown

Gas-phase 
dissociation

EnzymeCleavage 
specificity

Single peptide 
sequence

Single protein 
sequence

Boundary 
condition

MS/MSPMF

To complete this overview of the methods of protein identification, I’d like to compare the fundamental 
characteristics of database searching using MS data versus MS/MS data.
The mass spectrum of a tryptic digest of a protein of average size might contain 50 peptide masses, not 
dissimilar from the MS/MS spectrum of an average sized tryptic peptide. Thus, the “information content” of 
the individual spectra is similar. The reason an MS/MS search can be more powerful is mainly that the data set 
can contain many such spectra, so multiplying the information content. However, at the single spectrum level, 
there is little to choose.
In a peptide mass fingerprint, the boundary condition is that the peptides all originate from a single protein. In 
an MS/MS search, the boundary condition is that the fragments all originate from a single peptide. The 
weakness of the peptide mass fingerprint is that this boundary condition is often violated, and the spectrum 
actually represents the digest products of a protein mixture. The MS/MS boundary condition can also be 
violated, when we analyse co-eluting, isobaric peptides. If this happens, and we have a mixture, the MS/MS 
search is just as likely to fail as the PMF.
In the peptide mass fingerprint, the specificity comes from the predictable cleavage behaviour of the 
proteolytic enzyme. Thus, we want an enzyme with a low cutting frequency, such as trypsin. In the MS/MS 
ions search, the specificity comes from the mostly predictable gas-phase fragmentation behaviour of peptide 
molecular ions.
Arguably, the major strength of PMF is that it really is shotgun protein identification. The higher the coverage, 
the more confident one can be that the protein in the database is the one in the sample. The unique strength of 
searching MS/MS data is that one gets residue level information. A good match can reveal the presence and 
location of post translational modifications, which is not possible with a PMF.
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Practical Tips
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Peak detection, peak detection, peak 
detection

Especially critical for Peptide Mass Fingerprints
• A tryptic digest of an “average” protein (30 kDa) should 

produce of the order of 50 de-isotoped peptide peaks

Everyone is familiar with the phrase “garbage in garbage out”, usually applied to software. 
Which reminds us that the results of a database search are only as good as the peak list.
This is especially critical for Peptide Mass Fingerprint, because the higher mass peaks, 
which are the most discriminating, are often weak compared with the low mass peaks. 
When looking at a PMF peak list, bear in mind that a tryptic digest of an “average” protein 
(30 kDa) should produce something of the order of 50 de-isotoped peptide peaks. 
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If your peak list has only 2 or 3 peaks then you either have a very small protein or a 
sensitivity problem. At the other extreme, if you have 1000 peaks, most of them have to be 
noise, which will destroy the identification statistics.
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Peak detection, peak detection, peak 
detection

Especially critical for Peptide Mass Fingerprints
• A tryptic digest of an “average” protein (30 kDa) should 

produce of the order of 50 peptide peaks

Time domain summing of LC-MS/MS data is very 
important

If you are working with LC-MS/MS data, don’t neglect processing in the time domain 
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If your results look like this, with the same peptide identified over and over again, then it is 
likely that something is wrong with the data reduction settings. Ideally, there should only be 
two matches here, one for the 2+ precursor and one for the 3+. By summing together 
identical spectra, you gain in three ways: (i) the signal to noise of the summed spectrum is 
improved, making the identification more reliable, (ii) the report is more concise, (iii) the 
search is faster 
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Peak detection, peak detection, peak 
detection

Especially critical for Peptide Mass Fingerprints
• A tryptic digest of an “average” protein (30 kDa) should 

produce of the order of 50 peptide peaks

Time domain summing of LC-MS/MS data is very 
important
If in doubt, throw it out

• MS/MS spectra from low mass precursors (< 700 Da)
• And any spectrum with less than ~ 10 peaks

There is little point in searching MS/MS spectra from low mass precursors. Short peptides 
can occur by chance in large databases, so carry limited value for identification purposes. I 
recommend setting a cut-off at 700 Da, (not m/z 700).
To make searches as efficient as possible, it is also worth filtering out any MS/MS spectrum 
with less than around 10 peaks. You’re unlikely to get a meaningful match from a very 
sparse spectrum, so why waste time searching it?
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Practical Tips

Modifications
• Fixed / static modifications cost nothing
• Variable / differential modifications are very expensive
• Use minimum variable modifications, especially for PMF

Maybe oxidation of M
Maybe alkylation of C

Modifications in database searching are always handled in two ways. First, there are the 
fixed or static or quantitative modifications. An example would be a the efficient alkylation
of cysteine. Since all cysteines are modified, this is effectively just a change in the mass of 
cysteine. It carries no penalty in terms of search speed or specificity.
In contrast, most post-translational modifications do not apply to all instances of a residue. 
For example, phosphorylation might affect just one serine in a peptide containing many 
serines. These variable or differential or non-quantitative modifications are expensive, in 
the sense that they increase the time taken for a search and reduce its specificity. This is 
because the software has to permute out all the possible arrangements of modified and 
unmodified residues that fit to the peptide molecular mass. As more and more modifications 
are considered, the number of combinations and permutations increases geometrically. The 
so-called combinatorial explosion. 
Hence, it is very important to be as sparing as possible with variable modifications. 
Especially in a peptide mass fingerprint, where the increase in the number of calculated 
peptides quickly makes it impossible to find a statistically significant match.
Obviously, if the point of the search is to find a particular modification, you have no choice. 
But, if the aim of the search is to identify as many proteins as possible, the best advice is to 
use a minimum of variable modifications.
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Practical Tips

Make a reasonable estimate of mass error
• Don’t just guess, run a standard

Search a comprehensive, non-identical database
• NCBI nr, UniRef100, MSDB
• More about databases later

Making an estimate of the mass accuracy doesn’t have to be a guessing game. Most search 
engines include graphs of mass errors in the search report. Just search a standard and look at 
the error graphs for the strong matches. You’ll normally see some kind of trend. Add on a 
safety margin and this is your error estimate.
I’ll be returning to the subject of databases later. For now, the executive summary is: search 
a comprehensive, non-identical database, not a non-redundant one. NCBInr, UniRef100, 
and MSDB are ideal for general purpose searching. 
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Practical Tips

Enzyme
• Loose trypsin (cleaves KP, RP)
• Semi-specific trypsin
• Only use “no enzyme” if strictly necessary
• Set missed cleavages by inspection of standards

Protein MW
• Processed protein may be much shorter than database 

sequence

Protein pI
• Adds little specificity.

The vast majority of searches are of tryptic digests. Although some people like to perform 
searches without enzyme specificity, and then gain confidence that a match is correct if the 
match is tryptic, I don’t think this is a good idea. I normally choose loose trypsin, which 
cuts after K or R even when the next residue is P. If there is evidence for non-specific 
cleavage, then a semi-specific enzyme would be my next choice. This allows one end of the 
peptide to be non-specific, but not both. Only abandon enzyme specificity if you must, such 
as when searching endogenous peptides.
A missed cleavage parameter should set by looking at the successful search results to see 
how complete your digests are. Setting it far too high or far too low is nearly as bad as 
setting the wrong mass tolerance 
It is possible to constrain PMF searches by the mass or pI of the protein. I’m not a big fan of 
doing this. It adds little specificity to the search, and there is the risk of excluding the 
correct match because the processed protein was very different in mass or pI from the 
database entry.
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Practical Tips

Don’t cheat!
• Iteratively adjusting search parameters to get a better score 

can give misleading results
• Beware of

Narrowing the taxonomy
Reducing mass tolerances
Removing modifications
Selecting spectra or mass values

Set search parameters using standard samples

It is easy to distort the search results without realising.
Basically, it is risky to adjust the search parameters interactively to get a better score for an 
unknown. 
For example, you search the complete database and don’t get a significant match. However, 
a very interesting looking protein is near the top of the list, surrounded by some others that 
are clearly wrong. You change the taxonomy filter so as to exclude the “wrong” proteins. 
Sorry, but this is cheating.
Search parameters should be set using standards. Broadening the search if you get a 
negative result is usually OK, but not narrowing the search.
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Elias, J. E., et al., Intensity-based protein identification by machine learning from a library 
of tandem mass spectra, Nature Biotechnology 22 214-219 (2004)

Scoring

I borrowed this figure from a publication by the Steve Gygi group because it has to be the 
most colourful of all the scoring algorithms
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Finding a match

Filter
•Sequence tag

Relative / arbitrary score
•Count number of matches
•Cross correlation

Absolute score
•A priori classical or Bayesian probability
•Post-search score normalisation.

The way in which we find or judge or score a match is the most critical part of the whole 
method. There are three fundamentally different ways of finding a match:
First, a search can be a simple filter on the database. The original sequence tag was a filter. 
There may be no matches, there may be one, there may be hundreds. All matches are equal. 
If there are multiple matches, it is up to the user to make a decision which, if any, is the 
preferred match.
A second way to find a match is to use an arbitrary score. Anything which is a good 
discriminator between matches classified as correct and matches classified as incorrect. An 
example of an arbitrary score in PMF is counting the number of matched mass values. An 
example of an arbitrary score in MS/MS is the Sequest cross-correlation coefficient. 
Arbitrary scores may be very sensitive, and very good discriminators. The difficulty is 
defining a criterion to judge whether a match is real or not.
The third mechanism is an absolute score. These scoring schemes are invariably based on 
Bayesian or classical probability. The scoring algorithm can be intrinsically probabilistic, or 
it can be a normalisation procedure applied to an arbitrary score.
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PMF:

•Dates of birth of 
first 10 US 
Presidents

•Convert to 
“peptide mass”
using DDMM.YY

“Peptide mass”Date of birthPresident

2903.9029 March 1790John Tyler

902.739 February 1773 William Harrison

512.825 December 1782 Martin van Buren

1503.6715 March 1767 Andrew Jackson

1107.6711 July 1767 John Quincy Adams

2804.5828 April 1758 James Monroe

1603.5116 March 1751 James Madison

1304.3513 April 1735 Thomas Jefferson

3010.3530 October 1735 John Adams

2202.3222 February 1732 George Washington

Perfectly Meaningless Fingerprint

To illustrate the difference between the three ways of finding a match, I want to use a data 
set that is clearly rubbish. This PMF isn’t a peptide mass fingerprint, it’s a perfectly 
meaningless fingerprint.
Rather than choose random numbers, which you might think I selected to suit my argument, 
I’ve taken the dates of birth of the first ten US presidents and converted them to mass values 
as shown. Hopefully, no-one expects to get a positive protein identification from this data 
set.
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Filter
Require all masses to match

•Search conditions
Trypsin, 2 missed cleavages
Mass tolerance ± 0.5 Da
Average masses
No modifications

•Swiss-Prot
Failure (maximum number matched is 8)

•NCBI nr
Success (2 entries, nesprin 1 and titin) 

For our filter, let’s be stringent, and require all 10 mass values to match. The PMF search 
conditions are fairly standard.
If we search Swiss-Prot, our filter fails. The maximum number of matches of any entry is 8
If we search NCBInr, our filter succeeds. All 10 mass values can be matched by nesprin and 
titin!
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2904.22

903.07

512.54

1503.77

1107.26

2804.19

1603.65

1304.49

3010.45

2202.47

Matched mass

EEITIQQVHEETANTIQRKLEQHK

LEEQKKK

DYSK

LQNLQDAAKDMKK

VWIEQFER

SCQVALQEHEALEEALQSMWSWVK

GGSDSSLSEPGPGRSGR

QLKSVKEEQSK

LLDPEDVDVDKPDEKSIMTYVAQFLK

MQNLNRHWSLISSQTTER

Sequence“Peptide mass”President

2903.90John Tyler

902.73William Harrison

512.82Martin van Buren

1503.67Andrew Jackson

1107.67John Quincy Adams

2804.58James Monroe

1603.51James Madison

1304.35Thomas Jefferson

3010.35John Adams

2202.32George Washington

gi|55627590|ref|XP_518815.1| PREDICTED: nesprin 1 [Pan 
troglodytes] MW: 1038380 Da pI: 5.5

Which is the problem with a filter. It leaves us to do all the work, deciding whether the 
match is meaningful or not. If you didn’t know the source of the data, and needed to make a 
judgement on whether this match was real, you have to start pounding your calculator.
The sharp eyed will notice that nesprin is a pretty big protein, ~ 1 MDa. Titin is even bigger, 
at ~ 3 MDa. Which is why simply counting the number of matches is not such a great way 
of scoring a peptide mass fingerprint. Throw in a few modifications and you can match 
almost anything to these mega proteins
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Relative / arbitrary score
MOWSE

•http://srs.hgmp.mrc.ac.uk/cgi-bin/mowse

1  : PUTA_ECOLI 5.799922e+04 143814.8   0.600 
PROLINE DEHYDROGENASE (EC 1.5.99.8) (PROLINE OXIDASE)
MW     START  END    SEQ
2905.2 1148   1173   EWAANRPELQALCTQYGELAQAGTQR
2804.3 645    670    WQALPMLEQPVAAGEMSPVINPAEPK
1604.9 410    423    CPLVIDYLIDLATR
1503.7 591    604    LAQQEGQTGLPHPK
1107.2 735    744    TFSNAIAEVR
903.1  1267   1275   ALCEAVAAR
NO MATCH      3010.3 2202.3 1304.3 512.8  

Database: /data/mowse/owl
Data file: /tmp/44701116780804.data
Reagent: Trypsin
Tolerance: 0.10
Sequence MW: 0.0     
MW filter: 0.00%
Pfactor: 0.20  

This problem drove Darryl Pappin and colleagues to develop the Mowse scoring scheme, in 
which each mass match in a PMF contributes to the score according to the size of the 
peptide and the size of the protein. A small peptide from a large protein carries the lowest 
score, a large peptide from a small protein carries the highest. This counteracts the “titin
effect”, where the largest proteins will always pick up the most mass matches.
If we submit our meaningless data set to Mowse, the top match is proline oxidase, with 6 
matches out of 10. This is an improvement in the sense that nesprin and titin now have 
lower scores, despite getting 10 mass matches each. However, we still have the problem of 
deciding whether the match to proline oxidase is correct.
The difficulty is that the scores for good matches vary widely from data set to data set. 
Scores depend on factors such as the number of mass values and the mass tolerance, which 
precludes the use of a fixed threshold. One has to judge whether a match might be 
interesting according to whether it is an outlier. That is, whether there is a large enough 
score gap between the best match and the second best match.
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Probability based scoring

If we submit the same search to an algorithm that uses probability based scoring, such as 
Mascot, we still get a list of matches, but the report tells us that these matches are not 
statistically significant. The score threshold for this search is 76, and the top scoring match 
from our meaningless fingerprint is 47. The graph is a histogram of the scores of the top ten 
matches and, as you see, all of them are in the area shaded green to indicate random, 
meaningless matches.
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What is probability based scoring?

We compute the probability that the observed match 
between the experimental data and mass values 
calculated from a candidate protein or peptide 
sequence is a random event.

The ‘correct’ match, which is not a random event, has 
a very low probability.

What exactly do I mean by probability based scoring?
We calculate, as accurately as possible, the probability that the observed match between the 
experimental data, and mass values calculated from a candidate peptide or protein sequence, 
is a random event.
The real match, which is not a random event, then has a very low probability. 
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Probability based scoring enables standard 
statistical tests to be applied to results

In a database of 1,000,000 entries, a 1 in a 100 chance 
of getting a false positive match is a probability of
P = 1 / (100 x 1,000,000)

The calculated probability may be converted into a score or may be reported as an 
expectation value: how often you would expect to get a match this good or better purely by 
chance. This is possible because, if we are working with true probabilities, we just have to 
multiply the acceptable false positive rate by the number of trials. In the case of a PMF, the 
number of trials is the number of entries in the database. In the case of an MS/MS search, 
the number of trials is the number of candidate peptides.
So, for a PMF, if our acceptable false positive rate is 1%, and we have a million entries in 
the database, we are looking for probabilities of less than 10E-8.    
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Why is probability based scoring 
important?

• Human (even expert) judgment is subjective 
and can be unreliable

Why is probability based scoring important?
First and foremost, because it is very difficult to judge whether a match is significant or not 
by looking at the spectrum. Let me illustrate this with an example
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This match has a good, unbroken run of y ions plus a few b ions. All the major peaks seem 
to be labelled. Could such a good match have occurred by chance?
You cannot tell, because you can match anything to anything if you try hard enough.
If I say that I tossed a coin ten times and got ten heads in a row, does that mean there was 
something strange about the coin, like it had two heads? You cannot tell, because you need 
to know how many times I tossed the coin in total. If I picked it up off the table, tossed it ten 
times, then put it down, yes, that would suggest this was not a fair coin. However, if I tossed 
it ten thousand times, I would expect to get ten heads in a row more than once.
So, it isn’t just a matter of how good the match is, i.e. how many y or b ions you found, it’s 
a case of how hard you tried to find the match. In the case of a database search, this means 
how large is the database, what is the mass tolerance, how many variable modifications, 
etc., etc. These are very difficult calculations to do in your head, but they are easy 
calculations for the search engine.
If we look at the expectation value for this match, it is 2.1. That is, we could expect to get 
this match purely by chance. It looks good, but it’s a random match.
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If I show you a better match, then it is easy to dismiss the previous one as inferior. We can 
all make that judgement very easily. This match has an expectation value of less than 1 in 
1000. It is definitely not random. 
The challenge is, what if you don’t have the better match to compare against? Maybe this 
sequence wasn’t in the database. If you only had the inferior match, how would you decide 
by looking at it whether it was significant or not?
The other interesting question is whether this is the “correct” match. Who can say that a 
better match isn’t possible, where we get the last y ion or some more of the b ions fall into 
line?
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Why is probability based scoring 
important?

• Human (even expert) judgment is subjective 
and can be unreliable

• Standard, statistical tests of significance can 
be applied to the results

• Arbitrary scoring schemes are susceptible to 
false positives.

If we use probability based scoring, we can apply standard, statistical tests of significance to 
the results.
If we don’t do this, then how do we know what the level of false positives is? It could be 1 
in 1000 or 5% or 50%. In any statistical process, such as database matching, there will 
always be some level of false positives. The important thing is to know what it is.
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Can we calculate a probability that a 
match is correct?

Yes, if it is a test sample and you know what the 
answer should be

• Matches to the expected protein sequences are defined to 
be correct

• Matches to other sequences are defined to be wrong

If the sample is an unknown, then you have to 
define “correct” very carefully:

• The best match in the database?
• The best match out of all possible peptides?
• The peptide sequence that is uniquely and completely 

defined by the MS data?

Probability based scoring tells you the probability that the match is random. This is, the 
probability that the match is meaningless. Many people would prefer a probability that the 
match is correct. Is this possible?
It is certainly possible if you are analysing a known protein or standard mixture of proteins. 
If you know what the sequences are, or think you know, then the matches to the known 
sequences are defined to be correct and those to any other sequence are defined to be wrong.
If the sample is an unknown, then it is difficult even to define what is meant by a correct 
match.
Is the correct match the best match in the database? Certainly not ... this would be a false 
positive if the correct sequence was not in the database.
What about the best match out of all possible peptides. Yes, a reasonable definition, but not 
a very practical one. This is what we try to find in de novo sequencing. The reason for 
searching a database is that the data quality are not good enough for reliable de novo, so we 
reduce the size of the search space to the content of the chosen sequence database.
How about the peptide sequence that is uniquely and completely defined by the MS data? 
This is equally impractical. One rarely, if ever, sees a mass spectrum perfect enough to meet 
this criterion
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Expect 1.8E-5

Expect 9.2E-4

Expect 0.037

Expect 4.0 

This is a typical MS/MS search result, where we see a series of high scoring homologous 
peptides. The sequences of the top four matches are very similar, and their expectation 
values vary from random through to very unlikely to be random. The best match has an 
expectation value of 2E-5. However, we cannot be sure that this is an identity match to the 
analyte peptide. It is simply the best match we could find in the database. There is always 
the possibility that a better match exists, that is not in the database, so to call it the correct 
match can be misleading.
The important thing is that we have a mechanism to discard matches that are nothing more 
than random matches.
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It is a similar situation in Blast, except that you have the luxury of seeing when you have a 
perfect identity match. The identity match has an expectation value of 1E-6, which reminds 
us that it would be a random match if the database was a million times larger. The match 
with one different  residue is not worthless, it has an expectation value of 1E-5 and is a very 
good match. It just isn’t as good a match as the one above.
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We can learn a lot from sequence homology searching, which deals with many similar 
issues on a sound, statistical basis. 
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BLAST / FASTA

•Sequence against sequence 
•Can be used to find weak / distant similarity
•Can make gapped alignments

MS/MS-based ID

•Mass & intensity values against sequence 
•Looking for identity or near identity
•Generally, short peptides

In a Blast or Fasta search, we are comparing sequence against sequence. We don’t have to 
worry about transforming a mass spectrum into a sequence. You can see when you have an 
identity match while, in an MS/MS search, you never know whether a better match might be 
possible
The challenge of sequence homology searching is to perform more difficult matches. 
Looking for weak or distant similarity between sequences. It is also used to try and align 
long sequences, like complete proteins. In an extended sequence, there may be regions of 
high homology separated by regions with no homology, so that an optimal alignment 
requires gaps to be introduced. 
In MS/MS based searching, the challenge is to extract useful information from the noisy, 
fuzzy, imperfect mass spectrum. Because this is difficult, we are limited to looking for 
identity or near identity matches. In most cases, we side-step the problem of making a 
gapped alignment by working with short peptides. We don’t allow for gaps within peptides, 
unless we are using an error tolerant tag.
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If we are doing probability based matching, we are not scoring the quality of the spectru, we 
are scoring whether the match is random or not.
Even when the mass spectrum is of very high quality, if the peptide is so short that it could 
occur in the database by chance, then you will not get a very good score.
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The situation in a Blast search is identical. Even though this is a perfect identity 
match, the expectation value is 48. This is just a random match. Hence, the earlier 
tip to discard spectra from low mass precursors.
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Fenyo, D. and Beavis, R. C., A method for assessing the statistical significance 
of mass spectrometry-based protein identifications using general scoring 
schemes, Analytical Chemistry 75 768-774 (2003)

Post-search score normalisation

One method of transforming an arbitrary score into a probability is to determine the 
distribution of scores experimentally, and look for an outlier. As long as the number of 
matches is large, the score distribution will approximate to a normal distribution. An 
interesting match, with a high score, will be an outlier. The distance of the outlier from the 
tail of the distribution can be used to calculate an expectation value, which is the number of 
times we expect to get that score or better by chance.
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Post-search score normalisation

Sequest-Norm
MacCoss, M. J., et. al., Probability-based validation of protein identification using a 
modified Sequest algorithm, Anal. Chem., 74(21) 5593-5599 (2002).

PeptideProphet
Keller, A., et. al., Empirical statistical model to estimate the accuracy of peptide 
identifications made by MS/MS and database search, Anal. Chem., 74(20) 5383-5392 
(2002).

SVM
Anderson, D. C., et al., A new algorithm for the evaluation of shotgun peptide 
sequencing in proteomics: Support vector machine classification of peptide MS/MS 
spectra and SEQUEST scores, Journal of Proteome Research 2 137-146 (2003)

ANN
Baczek, T., et al., Artificial neural network analysis for evaluation of peptide MS/MS 
spectra in proteomics, Analytical Chemistry 76 1726-1732 (2004)

Prot_Probe
Sadygov, R. G., et al., Statistical models for protein validation using tandem mass 
spectral data and protein amino acid sequence databases, Analytical Chemistry 76 
1664-1671 (2004)

There are very many publications concerning the transformation of Sequest scores into 
probabilities. Some are listed here. The first and last are from the Yates group.
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Image courtesy of Institute for Systems Biology

One of the more widely discussed transforms is PeptideProphet from the Institute for 
Systems Biology. This derives an empirical discriminant function from a training set in 
which matches can be classified as correct or incorrect. This discriminant function is then 
fitted to other data sets using a technique known as expectation maximisation.



64

Validation & reporting tools
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Validation

Search a “decoy” database
•Reversed entries sufficient for MS/MS with 
enzyme

•Randomized required for MS/MS without enzyme 
or PMF

Direct estimate of false positive rate

Whether you use an arbitrary scoring scheme or probability based scoring, it is good 
scientific practice to verify the actual level of false positives, so validating the scoring 
scheme. 
One approach is to repeat the search, using identical search parameters, against a so-called 
decoy database. This is a database in which the sequences have been reversed or shuffled.
You do not expect to get any significant matches from the decoy database. So, the number 
of matches that are found is an excellent estimate of the false positive rate in the original 
search.
This is an excellent validation method for MS/MS searches of large data sets. It is not as 
useful for a search of a small number of spectra, because the numbers are too small to give 
an accurate estimate. Also, this method will not work for a two pass searches.
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Receiver-Operator Characteristic
(ROC Curve)
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The accepted way to report true and false positive rates is a Receiver-Operator 
Characteristic curve.  
If your scoring scheme was useless, and provided no discrimination between good and bad 
matches, then your ROC curve would follow the yellow dashed diagonal line. So, if your 
ROC curve wanders into the area below this diagonal, you have a serious problem. Tossing 
a coin would give better results
The curve shows what true positive rate we can expect, given an acceptable false positive 
rate. A good scoring scheme will try to follow the axes, as illustrated by the red curve, 
pushing its way up into the top left corner.
A real life scoring scheme can never actually reach the smiley face at the top left hand 
corner. The only point on the curve that has a zero false positive rate is the one at the origin, 
which has a zero true positive rate. 
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Mascot Ion score (AUC=0.98)
PeptideProphet (AUC=0.96)
Sonar (AUC=0.94)
Tandem (AUC=0.93)
Spectrummill (tag) (AUC=0.91)
Sequest XCorr (AUC=0.91)
Spectrummill (AUC=0.86)

A

ROC plot – trypsin (IPI db)

Kapp E. A., et al.,
Proteomics (HUPO-
PPP special issue), 
August 2005

Real-life ROC curves come in a variety of shapes. This plot shows curves from the 
reprocessing of the data collected for the HUPO plasma proteome project, being performed 
at the Ludwig Institute in Melbourne. 
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Reporting Tools - tabulation

DTASelect
• http://fields.scripps.edu/DTASelect/

Interact
• http://www.systemsbiology.org/Default.aspx?pagename=pr

oteomicssoftware

Silver
• http://llama.med.harvard.edu/~fgibbons/cgi/SILVER/silver.

cgi

ProteinProphet
• http://www.systemsbiology.org/Default.aspx?pagename=pr

oteomicssoftware

ROC curves are just one aspect of reporting search results. There are many tools available 
on the web that allow search results to be tabulated in different ways. This is just a 
selection.
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Reporting Tools – relational database

DBParser
• Yang, X., et al., DBParser: web-based software for shotgun 

proteomic data analyses, J. Proteome Res. 3 1002-8 (2004)

EPIR
• Kristensen, D. B., et al., Experimental Peptide 

Identification Repository (EPIR): An Integrated Peptide-
Centric Platform for Validation and Mining of Tandem Mass 
Spectrometry Data, Mol Cell Proteomics 3 1023-38 (2004)

For the ultimate flexibility in reporting, the search results need to be imported into a 
relational database. DBParser is free, EPIR is commercial. There are several commercial 
relational database products from the instrument vendors and the search engine developers
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Why searches can fail
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Why searches can fail

Poor quality data

The number one cause of failure is poor quality data. This is always the first place to look 
when there is a problem.
However, a search can fail even though the data look great



72

Why searches can fail

•Incorrect determination of precursor charge
•Particularly for higher charge states
•Sodiated ions?

•Under-estimated mass measurement error
•Peak detection may sometimes choose 13C peak
•Accuracy, not precision

Calling the wrong precursor charge is a common problem for low resolution instruments. It 
can also be a problem for higher charge states on instruments with good resolution. The 
instrument data system has very little time to make a decision on this, so may use a 
relatively crude algorithm to guess the charge state. Re-processing the data to determine the 
precursor m/z and charge may give better results.
And, maybe the charge isn’t a proton … high levels of sodium may produce sodiated ions
Peak detection routines sometime choose the 13C peak rather than the 12C peak, leading to 
unexpectedly large errors. 
Another common problem is being over optimistic about mass accuracy. Remember, it is 
accuracy that matters, not precision. If your error graph looks like this, wouldn’t it be worth 
calibrating? Then, it may be possible to search with a tolerance of +/- 0.1Da rather than +/-
0.5 Da.
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Why searches can fail

Protein or peptide sequence not in the 
database

•Less of a problem in PMF, unless working with 
unusual organism

•MS/MS: SNPs, sequencing errors, splice variants

Unsuspected chemical or post-translational 
modifications

Karty, J. A., et al., Artifacts and unassigned masses encountered in 
peptide mass mapping, J. Chrom. B 782 363-83 (2002)

An obvious cause for a search to fail is if the sequence is not in the database. As the 
databases get larger, this is becoming less of a problem for well represented organisms. A 
PMF will often give a reasonable match to a homologous protein from a related organism, 
because a sufficient number of the peptides will be the same. For an individual MS/MS 
spectrum, the exact peptide sequence is required, and a single base change, due to a SNP 
(single nucleotide polymorphism) or a sequencing error, can prevent matching.
Unsuspected modifications have identical consequences. This paper from the Reilly group 
provides an excellent analysis of the origins of many unexplained mass values in peptide 
digests.
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Why searches can fail

•Enzyme non-specificity
Olsen, J. V., et al., Trypsin Cleaves Exclusively C-terminal to Arginine and 
Lysine Residues, Mol. and Cellular Proteomics 3 608-14 (2004)

•In-source fragmentation – ragged ends?
•Contamination; endogenous proteases?
•Worth using “loose” trypsin, cleaves RP, KP

Mixture
•Protein mixture in PMF
•Isobaric, co-eluting peptide mixture in MS/MS

Enzyme non-specificity became the topic of a very lively debate recently on the ABRF
email discussion list. The trigger was this paper from Mann’s group.
They used the high accuracy of an FT instrument to study some 1000 tryptic peptides. There 
was no evidence for non-specific cleavage apart from some peptides with an N-terminal 
proline, which had originally been tryptic, but had lost N-terminal residues either in acid 
conditions in solution or by “nozzle-skimmer” fragmentation in the ion source.
Not everyone agrees with this point of view, but I think there is general agreement that 
trypsin is very accurate when the digest is properly conducted. Obviously, if the trypsin is 
contaminated, the picture may be different. Yates has pointed out that a cell lysate may 
contain endogenous proteases.
“Loose” trypsin, where cleavage is allowed before proline, often picks up some additional 
matches.
PMF searches can fail if the sample is a mixture. Similarly, a mixed MS/MS spectrum is 
unlikely to get a good match
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Why searches can fail

In-source re-
arrangement

Yague, J., et al., 
Peptide 
Rearrangement 
during Quadrupole
Ion Trap 
Fragmentation: 
Added Complexity to 
MS/MS Spectra, Anal. 
Chem. 75 1524-35 
(2003)

This is the one that frightens me. b ions cyclising in the instrument and then ring opening at 
a different place to scramble the sequence. Hopefully, not a very common phenomenon.
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Modifications

More about modifications
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It will be clear that comprehensive, accurate information about post translational and 
chemical modifications is a very important factor in the success of protein identification. I 
want to give a plug for Unimod, which is an on-line modifications database.
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Mass values are calculated from empirical chemical formulae, eliminating the most 
common source of error. Specificities can be defined in ways that are useful in database 
searching, and there is the option to enter mass-spec specific data, such as neutral loss 
information. This screen shot shows one of the better annotated entries, I can’t pretend that 
all of them are this detailed. Nevertheless, it is a very useful, public domain resource that 
beats having to create your own list in an Excel spreadsheet or on the back of an envelope.
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Two pass searching

First pass – simple search of entire database
• Minimal modifications
• Enzyme specificity

Second pass – exhaustive search of selected protein hits
• Wide range of modifications
• Look for SNPs
• Relax enzyme specificity

Examples
• Mascot – Error tolerant search

Creasy, D. M. and Cottrell, J. S., Error tolerant searching of 
uninterpreted tandem mass spectrometry data, Proteomics 2 1426-1434 
(2002)

• X!Tandem – Model refinement
Craig, R. and Beavis, R. C., A method for reducing the time required 

to match protein sequences with tandem mass spectra, Rapid 
Communications in Mass Spectrometry 17 2310-2316 (2003)

There are many hundreds of modifications in Unimod, yet I’ve emphasised the importance 
of using the minimum number of variable modifications in a search. So, how are we 
supposed to find these unusual modifications?
If you are searching uninterpreted MS/MS data, the efficient way to find unusual 
modifications, as well as variations in the primary sequence, is a two pass search. The first 
pass search is a simple search of the entire database with minimal modifications. The 
protein hits found in the first pass search are then selected for an exhaustive second pass 
search.
Because only a handful of entries are being searched, search time is not an issue. The down 
side is that it is difficult to apply any kind of threshold to the results, or calculate 
expectation values, because the entries being searched have been pre-selected.
This type of search can be performed by manually selecting entries to create a new fasta
database. More recently, it has been directly implemented into search engines such as 
Mascot and X!Tandem
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Sequence Databases

More about sequence databases
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Sequence Databases

NCBInr, UniRef100, MSDB (>2,000,000 entries)
• Comprehensive, non-identical

UniRef90, UniRef50, etc.
• Avoid non-redundant databases; need explicit sequences

Swiss-Prot (~180,000 entries)
• High quality, non-redundant; good for PMF

EST databases (>100,000,000 entries)
• Very large and very redundant
• Not suitable for PMF

Sequences from a single genome
• Very small databases may give misleading results
• Play safe by appending sequences to larger database

There are a huge number of database, and often it is not clear which is the appropriate one 
to choose for a search.
As mentioned earlier, the large, comprehensive, non-identical databases are the best choice 
for general purpose searching. Examples are NCBI nr, UniRef100, and MSDB.
Non-redundant databases are not ideal for database searching because you need the exact 
protein or peptide sequence to be explicitly represented in the database.
Swiss-Prot is acknowledged to be the best annotated database, but it is non-redundant. The 
Phenyx search engine actually reads Swiss-Prot annotations, so side-steps this problem. 
Swiss-Prot can also be a good choice for fast PMF searches, where the loss of one or two 
peptides may not be a concern.
The EST databases are huge. Worth trying with high quality MS/MS data if a good match 
could not be found in a protein database. Not advisable for PMF, because many sequences 
correspond to protein fragments.
Single genome databases are good for protein characterisation using MS/MS data. Small 
genomes are not such a good choice for protein identification. The statistics will be better if 
the sequences are appended to a larger database
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Searching Genomic DNA / SNP’s

SNP’s
• Digest with three different 

enzymes for multiple sequence 
coverage

• Search engine (Sequest) 
dynamically generates all 
possible SNP’s
Gatlin, C. L., et al., Automated 
identification of amino acid sequence 
variations in proteins by 
HPLC/microspray tandem mass 
spectrometry, Anal. Chem. 72 757-763 
(2000)

With most search engines, you are also able to search nucleic acid databases. Usually, these 
will be translated in all six reading frames.
Searching a nucleic acid database of ORFs (open reading frames) or coding sequences is not 
very different from searching a protein database.
Searching a nucleic acid database is the best way to search for SNP’s. One of the earliest 
examples of this was from the Yates group, where Sequest was used to identify 
haemoglobin mutants
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Searching Genomic DNA / SNP’s

Confirm and refine 
predicted genes

• Overpredict genes
• Use sequence tag to 

identify exon
• Use accurate MW data to 

refine exon – intron
boundaries
Kuster, B., et al., Mass 
spectrometry allows direct 
identification of proteins in 
large genomes, Proteomics 1 
641-650 (2001)

With genomic DNA sequence, there is the possibility to confirm the coding sequences of 
predicted genes, possibly finding errors. In this example from the Mann group, sequence 
tags were used to locate exons and then large numbers of accurate molecular mass values 
used to locate the exon / intron boundaries; like splattering paint through a stencil



84

Searching Genomic DNA / SNP’s

Search genomic DNA 
with uninterpreted
MS/MS data

• Look for splice 
variants, very small 
genes, etc.

• Lose ~ 20% of 
potential matches at 
exon – intron
boundaries
Choudhary, J. S., et 
al., Interrogating the 
human genome using 
uninterpreted mass 
spectrometry data, 
Proteomics 1 651-667 
(2001)

This is an early example of searching the human genome assembly using uninterpreted
MS/MS data. The graphic shows the peptide matches displayed using a genome browser. 
The red bands are the peptide matches and the blue bands are the predicted coding 
sequences.
The disadvantage of searching raw genomic DNA with an exon / intron structure is that a 
fraction of the potential matches are lost because they straddle boundaries. In the case of the 
human genome, the fraction is about 20%.
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Future
Directions
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Future directions

Fully integrated searching
•First & second pass searching of uninterpreted
spectra

•Error tolerant Sequence Tag
•De novo
•Sequence homology

Data management
•Automation
•Data mining

We still have some way to go to integrate the many tools and techniques for extracting 
useful information from protein mass spectrometry data. Tools for automation, data 
management and data mining are limited in scope, and mostly support just one vendor’s 
products. 
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Future directions

Structure-based
spectrum prediction

Tabb, D. L., et al., Statistical characterization of ion trap tandem mass 
spectra from doubly charged tryptic peptides, Anal. Chem. 75 1155-1163 
(2003)
Kapp, E. A., et al., Mining a tandem mass spectrometry database to 
determine the trends and global factors influencing peptide 
fragmentation, Anal. Chem. 75 6251-6264 (2003)
Elias, J. E., et al., Intensity-based protein identification by machine 
learning from a library of tandem mass spectra, Nature Biotechnology 22 
214-219 (2004)

There is a great deal of interest in trying to make better use of the intensity information in 
an MS/MS spectrum. Several groups have tried to extract useful rules from compilations of 
spectra. These three papers are a good introduction, and contain references to other work in 
this area. The figure is from the Kapp paper.
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Future directions

Top-down proteomics
Meng, F. Y., et al., Informatics 
and multiplexing of intact 
protein identification in 
bacteria and the archaea, 
Nature Biotechnology 19 952-
957 (2001)

Prosight PTM
• https://prosightptm.scs.uiuc.edu/

I’ve focused on the matching of MS/MS data from peptides, but there is also interest in 
matching data from intact proteins, so-called top-down proteomics. The Kelleher group is 
one of the most active, and has developed a software package called Prosight
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Future directions

Better use of accurate mass
Schlosser, A. and Lehmann, W. D., Patchwork peptide sequencing: 
Extraction of sequence information from accurate mass data of 
peptide tandem mass spectra recorded at high resolution,
Proteomics, 2(5) 524-533 (2002)
Spengler, B., De Novo Sequencing, Peptide Composition Analysis, 
and Composition-Based Sequencing: A New Strategy Employing 
Accurate Mass Determination by Fourier Transform Ion Cyclotron 
Resonance Mass Spectrometry, J. Am. Soc. Mass Spectrom. 15 703-
14 (2004)

One of the strengths of mass spectrometry for small molecules is the possibility to get an 
empirical chemical formula direct from an accurate mass measurement. Wolf Lehmann and 
colleagues pointed out that we could do a similar thing with the low mass fragment ions in 
an MS/MS spectrum. If the mass accuracy is high enough, the amino acid composition of a 
fragment can be reduced to just a few possibilities, maybe only one. I don’t think any of the 
mainstream search engines take advantage of this yet. 
Bernhard Spengler has applied the same concept to improve de novo sequence 
interpretation
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Future directions

Data Repositories
•Pride

http://www.ebi.ac.uk/pride/
•gpmDB

http://www.thegpm.org/GPMDB/index.html
•Open Proteomics Database

http://bioinformatics.icmb.utexas.edu/OPD/
•PeptideAtlas

http://www.peptideatlas.org/

A few prototype repositories for proteomics data are starting to get off the ground. gpmDB
is interesting because it makes it easy to compare your own search results with the 
accumulated results of other people’s searches. Peptide Atlas addresses the issue of 
presenting identifications in an integrated, hierarchical fashion.
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This enables the peptide matches to be displayed against the genomic DNA sequence, 
annotated with genes and coding sequences. Proteins from a variety of databases, plus 
translations from mRNAs and EST’s are aligned so as to provide a comprehensive picture 
of the context for each peptide match.
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Future directions

Standards
Pergola, P. G., et al., A common open representation of mass 
spectrometry data and its application to proteomics research, Nat 
Biotechnol. 22 1459-66 (2004)

• Proteomics Standards Initiative
mzData, mzIdent
http://psidev.sourceforge.net/ms/

• Institute for Systems Biology
pepXML, mzXML
http://sashimi.sourceforge.net/software_tpp.html

Guidelines
Carr, S., et. al., The need for guidelines in publication of peptide and 
protein identification data, Molecular & Cellular Proteomics 2004, 3, 531-
3.

Finally, there are strong moves towards standards and guidelines for the exchange and 
publication of proteomics data, the majority of which relates to database searching. The 
Proteomics Standards Initiative and the Institute for Systems Biology are both very active in 
this area. All those involved are well aware that these efforts can only succeed by being 
inclusive, and achieving a consensus among all interested parties. 
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http://tinyurl.com/e4brg

A presentation such as this has to be brief and superficial. I’ll finish by listing a few relevant 
reviews, which make a good starting point for anyone wishing to explore the field in greater 
depth.


