

Choices, choices, choices ...

- Which sequence database?
- Which modifications?
- What mass tolerance?

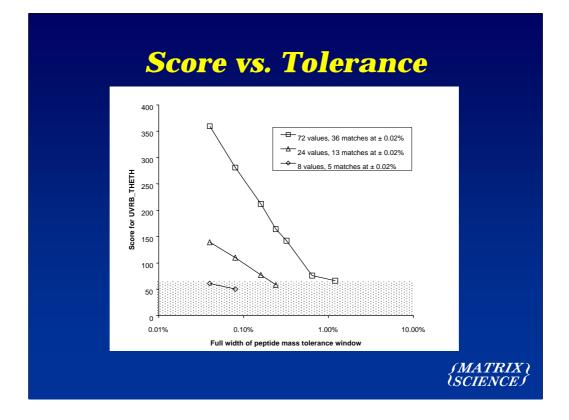
Where to begin?

Swiss-prot	fast search; not comprehensive;
	consensus sequence; good annotations
MSDB, NCBI nr	average speed; comprehensive; non-identical
IbEST	slow search; exhaustive & redundant
opecies specific ORFS	fast search; exhaustive for one species

Swiss-prot is the highest quality database, but many entries are consensus sequences, with variants described in the annotations. Mascot searches only the FASTA sequence, so these variants are missed. Better to use a database where variant sequences are included as separate entries.

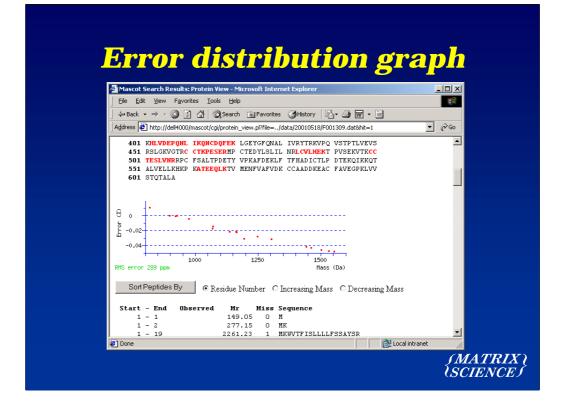
Variable modifications

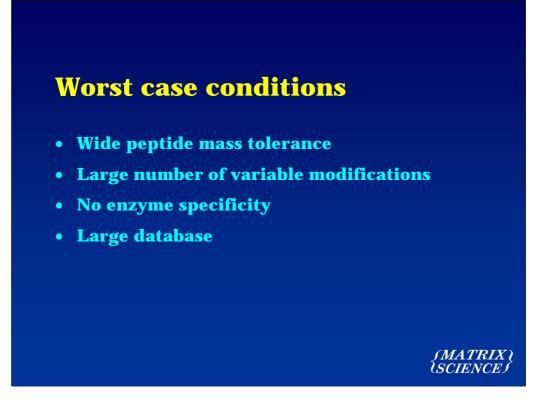
- Increase search time
- Reduce specificity
- First pass
 - Fixed: Cys alkylation
 - Variable: Met oxidation
- Watch for
 - Multiple variable Cys mods


Modfications should be used sparingly in a first pass search.

{MATRIX} (SCIENCE)

Mass Tolerances


- Better to be pessimistic
- Accuracy, not precision
- Proportional (%, ppm) or fixed (Da, mmu)?
- Higher accuracy = higher specificity


For peptide mass fingerprinting, high mass accuracy is most important when there are only a few mass values. As the data set becomes larger, high accuracy becomes less critical.

For a data set with 36 matches from 72 mass values, a significant match can be obtained even when the mass tolerance approaches 1%. With a smaller data set, 13 matches from 24, a significant match requires a mass tolerance of better than 0.2%. If the data set is only 5 matches from 8, the match is never significant.

The best way to decide on the mass tolerance setting is to look at the error graphs. For peptide mass values, the error graph is on the protein view report. For fragment ion mass values, the error graph is on the peptide view report.

The graphs will also give an indication of whether a constant (Da, mmu) or a fractional (%, ppm) error window is most appropriate.

Search time and search specificity are inversely related.

Search time increases proportionately to peptide mass tolerance and database size.

Search time increases geometrically with the number of variable modifications.

Going from tryptic specificity to no-enzyme will typically increase the search time by a factor between 100 and 1000

Interpreting the results

- What does the score mean?
- What does the histogram mean?
- **Protein View**
- Peptide summary report vs Protein summary report for ms-ms data
- MS-MS fragment ions identity / homology threshold
- Repeating searches with different parameters
- "Tour" of a complex MS-MS results page

Probability based scoring:

Compute the probability that the observed match between the experimental data and mass values calculated from a candidate peptide sequence is a random event.

The correct match, which is not a random event, has a very low probability.

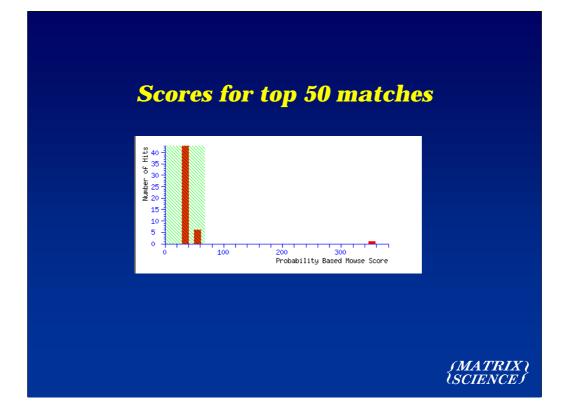
Probability based scoring enables standard statistical tests to be applied to results

Mascot score is -10Log₁₀(P)

In a database of 500,000 entries, a 1 in a 1,000 chance of getting a false positive match is a probability of

 $P = 1 / (1,000 \times 500,000)$

Equivalent to a Mascot score of 87


The most important advantage of probability based scoring is that we can use standard statistical tests to determine significance. That is, we have an objective means of determining whether a match is strong or weak ... or a false positive.

(MATRIX) SCIENCE

Assigning a significance threshold or confidence level to a match is extremely simple. Assume we are running a fully automated system and prefer to repeat an experiment rather than get a false positive. We might choose a significance threshold of 1 in 1,000. That is, we are only interested in results which have less than a 1 in 1,000 chance of being random events.

If the database being searched has 500,000 protein entries, a 1 in 1,000 chance of finding a match is simply 1 over 1,000 times 500,000. Which converts into a Mascot score of 87.

So, we can have a simple rule in software which looks for matches with scores greater than 87.

At the top of each report, there is a histogram of the score distribution for the top 50 matches. Here, out of the top 50 protein hits, 49 have scores which are below the 5% significance threshold of 67. The area below the significance threshold is shaded green. One hit has a much higher score, 352. Very much higher when you appreciate that this is a logarithmic scale.

Protein Summary

- Always used for peptide mass fingerprint
- Option for MS/MS ions search
- Not suitable for complex mixtures
- Lists top scoring protein matches

🗿 Mascot Search Results - Microsoft Internet Explorer	_8×
Ele Edit View Favorites Iools Help	
🖕 Back 🗸 🤿 🗸 🔯 🖓 🕼 🕼 Search 👔 Favorites 🎯 History 🛛 🖏 🖬 🖌 🗐	
Address 🛃 http://dell5000/mascot/cgi/master_results.pl?REPTYPE=Protein&file=/data/20010523/F041288.dat	💌 🤗 Go 🛛 Links
(MATRIX) (SCIENCE) Mascot Search Results	
User : JSC Email : jcottrell@matrixscience.com Search title :	
Database : MSDB 20010401 (634857 sequences; 196694506 residues) Timestamp : 23 May 2001 at 20:04:23 GMT Top Score : 177 for BAA08653, TTHUVRB NID: - Thermus thermophilus	
Probability Based Mowse Score	
Score is -10*Log(P), where P is the probability that the observed match is a random event. Protein scores greater than 71 are significant (p<0.05).	
STRU 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	
Protein Summary Report	
To create a bookmark for this report, right click this link: Protein Summary Report (./data/20010523/F041288.dat)	
Re-Search All Search Unmatched	
1	
Done	Local intranet

The top of a protein summary report

· · · · · ·		esults - Microsol		plorer							- 8
ile	<u>E</u> dit ⊻iew	Favorites <u>T</u> ool	s <u>H</u> elp								
ј= В	ack 🔹 🔿 👻	🛛 🖸 🖆 🔇	🕽 Search 🛛 🚡 F	avorites 🔇	History 🛛 🗟 🕶	<i>3</i> 🗹	• 📃				
(dre:	ss 🧃 http://o	dell5000/mascot/cgi,	/master_results	.pl?REPTYPE=F	Protein&file=/d	ata/2001	0523/F041	288.dat	-	∂ Go	ļ
nd	ex										
	Accession		Score	Descrip							
	BAA08653	76112	177		NID: - T						
	1D2MA	63099	114					bacteria (fragments)			
	09ZR01	143743	50					N Arabidopsis thaliana (Mouse-ear cress).			
	D75098	15299	48					- Pyrococcus abyssi (strain Orsay)			
	09LG12	7430 37654						ana (Mouse-ear cress).			
	AAK02511 063038	23477			9 NID: -						
	053038 09NZD8	23477 34938			- Homo sap			AGMENT) Leptotheca boliviana.			
	T24558	43356						- Caenorhabditis elegans			
	C83457	14390						imported] - Pseudomonas aeruginosa (strain H	01010		
	S65576	27470						rotein PhoU PA5365 [imported] - Pseudomonas			
	09WND4	9250						n immunodeficiency virus type 1.	acragin	554	
	D69036	22031						n MTH1267 - Methanobacterium thermoautotroph	iaum (a	train	De
	09NDK8	53644						MENT) Leishmania major.	.10000 (5)	crain	De
	090089	59105						pple mealybug wilt associated virus-2.			
	087438	45128						NT) Chimpanzee immunodeficiency virus (SIV	licnzii	(CTW)	
	096606	62534						 Leishmania major. 	(092))	(011).	•
	09NKM3	62 62 5						shmania major.			
	0903X4	84989						BUNIT 5 Homo sapiens (Human).			
	WIBEAK	31149						disease virus (strain GA)			
es	ults List										
		Mass: 76112									
		- Thermus									
	erved		Mr(calc)	Delta	Start			Peptide			
	12.75		1011.61	0.14	17 -	26	0	AIAGLVEALR			
	53.65		1152.58	0.06	285 -	293	0	TLYDLEMLR			
	92.65		1191.58	0.06	210 -	219	0	VELFGDEVER			
	:02.73		1201.68	0.04	65 -	75	0	ILAAQLAAEFR			
	22.67		1221.65	0.02	220 -	230	0	ISQVHPVTGER			
	51.72		1250.71	0.00	363 -	373	0	LPSALDNRPLR			
	85.79		1584.84	-0.06	488 -	501	0	LGHYDCLVGINLLR			
	330.93		1829.99	-0.07	132 -	149	0	DVIVVASVSAIYGLGDPR			
18	355.94	1854.93	1854.99	-0.06	419 -	434	0	VKPTENQILDLMEGIR			

The hit list for a protein summary report

File Edit View	F <u>a</u> vorites	<u>T</u> ools <u>H</u> elp						
← Back - → -	- 	🔍 Search 🛛 🖓 F	avorites 🖪 H	istory 🛛 🛃 🗸		• 🗐		
ddress 🖉 http:/		/cgi/master_results					288.dat	€ Go
1222.67	1221.66	1221.70	-0.03	186 -	195		ALYVANFIRR	• 1
1504.94	1503.93	1503.76	0.17	123 -	135	1	DVDSKSLHDIFTK	
	1584.78	1584.76	0.02	154 -	167	1	GYGFVHFKDETSAK	
1855.94	1854.93	1854.90	0.02	313 -	328	0	NFDPEFTGADLLELFK	
2197.07	2196.06	2196.06	-0.00	406 -	424	1	QMHQPMPFVGSQGRPMRGR	
o match to:	1012.75,	1153.65, 119	92.65, 120	2.73, 1251	.72,	1830.9	3, 1979.98, 1987.03, 2062.03, 2499.25, 2512.75, 3008	.33, 30
9. Q9UJX4	Mass: 8498	9 Score: 4:	L					
NAPHASE-PRO	MOTING COM	IPLEX SUBUNIT	5 Homo	sapiens (Humar	n).		
Observed	Mr(expt)	Mr(calc)	Delta	Start	End	Miss	Peptide	
	1503.93	1503.79	0.14	355 -	367	1	SDSYVLLEHSVKK	
	1584.78	1584.80	-0.02	684 -	698		AEALEAAIENLNEAK	
	1829.92		-0.01	154 -	168		LYTALQQYFQNGEKK	
2197.07	2196.06		-0.05	211 -	229		QAEFFLSQQASLLKNDETK	
3008.33	3007.32	3007.51	-0.19	519 -	546	1	AMNDGKYHLADSLVTGITALNSIEGVYR 2, 1855.94, 1979.98, 1987.03, 2062.03, 2499.25, 2512	
					,		-,,,,,,,,,,	, .
		9 Score: 43 Marek's dises		laturain Ch				
Observed	Mr(expt)		Delta	Start		Miee	Peptide	
	1503.93	1503.82	0.11	185 -	197	1	ONPNILGEHLNKK	
	3197.63	3197.62	0.01	219 -	248	-	SYMLVTLICSAKSLLLGSCMSFFAGMLVGR	
4015.94	4014.93	4014.96	-0.03	148 -	184	1	QMGELAQQCEGGTYADLLVEAEQAVVHSVRALMLAER	
No match to:	1012.75,	1153.65, 119	2.65, 120	2.73, 1222	.67,	1251.7	2, 1585.79, 1830.93, 1855.94, 1979.98, 1987.03, 2062	.03, 2:
Search Para	meters							
Type of sear	ch	: Peptide M	lass Finge	rprint				
Enzyme		: Trypsin						
Mass values		: Monoisoto	-					
Protein Mass		: Unrestrie	ted					
		: ± 0.2 Da						
Peptide Char		: 1+						
Max Missed (leavages	: 1						
				Mascot:	http:/	/www.n	atrixscience.com/	

The bottom of the report showing the search parameter summary

		soft Internet Exp	pioner					- 8
jie <u>E</u> dit ⊻iew								
🛏 Back 👻 🔿 👻	S 🖉 🖓	🖓 Search 🛛 🕍 F	avorites 🌀	History	4 🗹	• 📃		
ddress 🧧 http://	/dell5000/mascot/	'cgi/master_results.	pl?REPTYPE=P	rotein&file=/da	ta/2001(0523/F041	288.dat 🗾 🖗 Go	Ju
Results List								
BAA08653	Mass: 761	12 Score: 1	177					
THUVRB NID:	- Thermu	s thermophil	lus					
Observed	Mr(expt)	Mr(calc)	Delta	Start	End	Miss	Peptide	
1012.75	1011.75	1011.61	0.14	17 -	26	0	AIAGLVEALR	
1153.65	1152.64	1152.58	0.06	285 -	293	0	TLYDLEMLR	
1192.65	1191.64	1191.58	0.06	210 -	219	0	VELFGDEVER	
1202.73	1201.72	1201.68	0.04	65 -	75	0	ILAAQLAAEFR	
1222.67	1221.66	1221.65	0.02	220 -	230	0	ISQVHPVTGER	
1251.72	1250.71	1250.71	0.00	363 -	373	0	LPSALDNRPLR	
1585.79	1584.78	1584.84	-0.06	488 -	501	0	LGHYDCLVGINLLR	
1830.93	1829.92	1829.99	-0.07	132 -	149	0	DVIVVASVSAIYGLGDPR	
1855.94	1854.93	1854.99	-0.06	419 -	434	0	VKPTENQILDLMEGIR	
1987.03	1986.02	1986.09	-0.07	131 -	149	1	RDVIVVASVSAIYGLGDPR	
2062.03	2061.02	2061.08	-0.06	192 -	209	1	AKGEVLEIFPAYETEPIR	
2197.07	2196.06	2196.13	-0.07	566 -	584	1	RALQEAYNLEHGITPETVR	
2499.25	2498.24	2498.33	-0.08	502 -	524	1	EGLDIPEVSLVAILDADKEGFLR	
3198.64	3197.63	3197.69	-0.06	233 -	260	1	ELPGFVLFPATHYLSPEGLEEILKEIEK	
To match to:	1504.94,	1979.98, 251	12.75, 300	08.33, 3019	9.95,	3207.4	9, 3912.15, 4015.94	
2. <u>102MA</u> Ma	ss: 63099	Score: 114						
excinuclease	abc subun	it b - bacte	eria (frag	gments)				
Observed	Mr(expt)	Mr(calc)	Delta	Start	End	Miss	Peptide	
1012.75	1011.75	1011.61	0.14	16 -	25	0	AIAGLVEALR	
1153.65	1152.64	1152.58	0.06	254 -	262	0	TLYDLEMLR	
1202.73	1201.72	1201.68	0.04	64 -	74	0	ILAAQLAAEFR	
1251.72	1250.71	1250.71	0.00	332 -	342	0	LPSALDNRPLR	
1585.79	1584.78	1584.84	-0.06	457 -	470	0	LGHYDCLVGINLLR	
1830.93	1829.92	1829.99	-0.07	131 -	148	0	DVIVVASVSAIYGLGDPR	
1855.94	1854.93	1854.99	-0.06	388 -	403	0	VKPTENQILDLMEGIR	
1987.03	1986.02	1986.09	-0.07	130 -	148	1	RDVIVVASVSAIVGLGDPR	
2062.03	2061.02	2061.08	-0.06	184 -	201	1	AKGEVLEIFPAYETEPIR	
2499.25	2498.24	2498.33	-0.08	471 -	493	1	EGLDIPEVSLVAILDADKEGFLR	
o match to:	1192.65,	1222.67, 150	04.94, 197	79.98, 2197	.07,	2512.7	5, 3008.33, 3019.95, 3198.64, 3207.49, 3912.15, 4015.94	
097801	ace 14374	3 Score: 51						
		PROTEIN A		ie thelions	(Ner		(rece)	
Observed	Mr(expt)	Mr(calc)	Delta	Start			Pentide	

The protein summary report tabulates details of the matches for the top hits. Here, we can see that hit 2 is not a different protein, it is just a fragment of hit 1.

Mascot Search Results: Protein View - Microsoft Internet Explorer	
Eile Edit View Favorites Iools Help	
🖕 Back 🔻 🔿 🖌 🙆 🕼 🖓 🧔 Search 💿 Favorites 🕃 History 🔯 🖷 🚽 🔛 🗸 🗐	
Address 🔕 http://dell5000/mascot/cgi/protein_view.pl?file=/data/20010523/F041288.dat8hit=1	▼ 🔗 Go Links
(MATRIX) (SCIENCE) Mascot Search Results	
Protein View	
Match to BAA08653: TTHUVRB NID: - Thermus thermophilus	
Taxonomy: Thermus thermophilus	
Links to retrieve other entries containing this sequence from NCBI Entrez:	
UVRE_THETH from Thermus thermophilus	
Nominal mass of protein (M_): 76112	
Cleavage by Trypsin: cuts C-term side of KR unless next residue is P	
Sequence Coverage: 29%	
NCBI BLAST search of BAA08653 against nr	
Calculated pI value: 5.66	
Unformatted sequence string for pasting into other applications	
Matched peptides shown in Bold Red	
1 MTFRYRGPSP KGDQPKAIAG LVEALRDGER FVTLLGATGT GKTVTMAKVI	
51 EALGRPALVL APOKILAAQL AAEFRELFFE NAVEYFISYY DYYQFEAVVP	
101 GKDLYIEKDA SINPEIERLR HSTIRSLITE ROVIVVASVS AIVGLGDPRE	
151 YRARNLVVER GKPYPREVLL ERLLELGYOR NDIDLSPGRF RAKGEVLEIF	
201 PAYETEPIRV ELFGDEVERI SUVHPVTGER LRELPGFVLF PATHYLSPEG	
251 LEEILKEIEK ELWERVRYFE ERGEVLYAQR LKERTLYDLE MLRVMGTCPG	
301 VENYARYFTG KAPGEPPYTL LDYFPEDFLV FLDESHVTVP QLQGMYRGDY	
351 ARKKTLVDYG FRLPSALDNR PLRFEEFLER VSQVVFVSAT PGPFELAHSG	
401 RVUEQIIRPT GLUPPLVRVK PTENGILDLM EGIRERAARG ERLUTVLITV	
451 RMAELTSFL VEHGIRARYL HHELDAFKRQ ALIRDLRLGH YOLVGIMLL	
501 REGLDIPEVS LVAILDADKE GFLRSERSLI QTIGRAARNA RGEVWLYADR 551 VSEAMQRAIE ETNRRRALQE AYNLEHGITP ETVRKEVRAV IRPEGYEEAP	
601 LEADLSGEDL RERIAELELA MUQAAEALDF ERAARLRDEI RALEARLQGV	
651 RAPEPVPGGR KRKRR	
ĝ 0.1	-
	Þ
* Done	

Clicking on the accession number link leads to the protein view report.

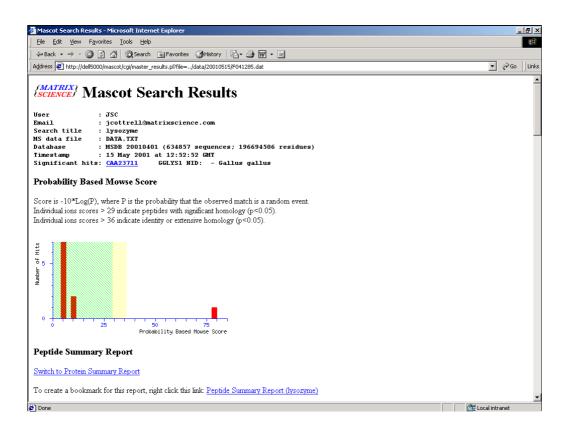
and an in the	esuits. Frotein a	new - Microsof	: Internet Explorer	_ 8
File Edit View	Favorites <u>T</u> ool	ls <u>H</u> elp		
← Back → → →	🛛 🕅 🖄 🔇	Search GEE	worites 🎯History 🔄 🗃 🖬 + 📄	
Address 2 http://d	all5000/mascot/cgi	ii/protein_view.pl	file=/data/20010523/F041288.dat&hit=1	▼ 🖓 Go 🛛 Lir
			ERSLI QTIGRAARNA RGEVWLYADR	
			HGITP ETVRKEVRAV IRPEGYEEAP EALDF ERAARLRDEI RALEARL <u>O</u> GV	
	PGGR KRKRR	LLLA NUQAA	EALDY ERAARLEDEI RALEARLUGV	
001 100 201	10010 111111			
£ 0.1				
8 1				
ъ <u>і</u> :				
<u>د</u> م				
		1.11	 A second sec second second sec	
-0.1			•	
1200 MS error 48 ppm	1600	2000	2400 2800 3200 Mass (Da)	
ns error 40 ppu			nass (Da)	
0.10.51				
Sort Peptides	BY © Re	esidue Numbe	r 🔿 Increasing Mass 🔿 Decreasing Mass	
Start - End	Observed	Mr M	iss Sequence	
1 - 1				
		149.05	0 M	
1 - 4		149.05 553.27	0 MTFR	
1 - 4 1 - 6		149.05 553.27 872.43	0 MTFR 1 MTFRYR	
1 - 4 1 - 6 2 - 4		149.05 553.27 872.43 422.23	0 NTFR 1 NTFRYR 0 TFR	
1 - 4 1 - 6		149.05 553.27 872.43 422.23 741.39	0 MTFR 1 MTFRYR	
1 - 4 1 - 6 2 - 4 2 - 6		149.05 553.27 872.43 422.23	0 MTFR 1 MITRYR 0 TFR 1 TFRYR	
1 - 4 1 - 6 2 - 4 2 - 6 5 - 6		149.05 553.27 872.43 422.23 741.39 337.18	0 MTFR 1 MTFRVR 0 TFR 1 TFRVR 0 VR	
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		149.05 553.27 872.43 422.23 741.39 337.18 803.43 484.26 1009.52	0 MTFR 1 MTFRYR 0 TFR 1 TFRYR 0 YRCPSFK 0 GPSPK 1 GPSFKGDQPK	
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		$149.05 \\ 553.27 \\ 872.43 \\ 422.23 \\ 741.39 \\ 337.18 \\ 803.43 \\ 484.26 \\ 1009.52 \\ 543.27 \\ $	0 MTFR 1 MTFRYR 0 TFR 1 TFRYR 0 YR 1 YROPSPK 0 GPSPK 1 GPSPKGDQPK 0 GDQPK	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$\begin{array}{c} 149.05\\ 553.27\\ 872.43\\ 422.23\\ 741.39\\ 337.18\\ 803.43\\ 484.26\\ 1009.52\\ 543.27\\ 1536.86 \end{array}$	0 MITR 1 MITRYR 0 TFR 1 TFRYR 0 TFR 1 TFRYR 0 YR 1 YROPSPK 0 GPSPK 1 GPSPKGDQPK 1 GOQFKAIJGLUEALR	
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	1012.75	149.05 553.27 872.43 422.23 741.39 337.18 803.43 464.26 1009.52 543.27 1536.86 1011.61	0 MTFR 1 MITRYR 0 TFR 1 TFRYR 1 TFRYR 0 YR 1 YRGPSPK 0 GPSPK 1 GPSPKKDOPK 0 GDQPK 1 GDQPKAIAGLVEALR 0 ALGLVEALR 0 ALGLVEALR	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1012.75	$\begin{array}{c} 149.05\\ 553.27\\ 872.43\\ 422.23\\ 741.39\\ 337.18\\ 803.43\\ 484.26\\ 1009.52\\ 543.27\\ 1536.86\\ \textbf{1011.61}\\ 1468.80 \end{array}$	0 MTFR 1 MTFRY 0 TFR 1 TFFNT 1 TFFNT 1 YROPSPK 0 GPSPK 0 GPSPK 0 GDOPKATAGLVEALR 0 ATAGLVEALRAGER	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1012.75	$\begin{array}{c} 149.05\\ 553.27\\ 872.43\\ 422.23\\ 741.39\\ 803.43\\ 464.26\\ 1009.52\\ 543.27\\ 1536.86\\ 1011.61\\ 1468.80\\ 475.20\\ \end{array}$	0 MTFR 1 MTFRVB 0 TFR 1 TFRYBR 0 YR 1 TFRYBR 0 GPSPK 1 GPSPKOPK 1 GPSPKAIAGLVEALR 1 ALAGLVEALR 0 ALAGLVEALR 0 DCER	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1012.75	149.05 553.27 872.43 422.23 741.39 337.18 803.43 484.26 1009.52 543.27 1536.86 1011.61 1468.80 475.20 1620.85	0 MTFR 1 MTFRVA 0 TFR 1 TFRVAR 0 YR 1 TROPSPK 0 GPSPK 0 GDQPK 1 GODYCRIAGLVEALR 1 ATAGLVEALR 1 ATAGLVEALR 1 DEGER 1 DEGERVTLIGATGTGK	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1012.75	149.05 553.27 872.43 422.23 741.39 337.18 803.43 464.26 1009.52 543.27 1536.86 1011.61 1468.80 475.20 1620.85 1163.65	0 MTTR 1 MTTRTYR 0 TTR 1 TTRTYR 0 TYR 1 TSPXR 0 SPSPK 1 GPSPKGDQPK 0 GOQPK 1 GOQPKALJGLUEALR 1 ATAGLVEALROER 0 JGGER 1 DEGREFVTLLGATGTGK 0 FVTLLGATGTGK	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1012.75	149.05 553.27 872.43 422.23 741.39 337.18 803.43 484.26 1009.52 543.27 1536.86 1011.61 1468.80 475.20 1620.85	0 MTFR 1 MTFRVA 0 TFR 1 TFRVAR 0 YR 1 TROPSPK 0 GPSPK 0 GDQPK 1 GODYCRIAGLVEALR 1 ATAGLVEALR 1 ATAGLVEALR 1 DEGER 1 DEGERVTLIGATGTGK	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1012.75	$\begin{array}{r} 149.05\\ 553.27\\ 872.43\\ 422.23\\ 741.39\\ 337.18\\ 803.43\\ 484.26\\ 1009.52\\ 543.27\\ 1536.86\\ \textbf{1011.61}\\ 1468.80\\ 475.20\\ 1620.85\\ 1163.65\\ 1794.99\end{array}$	0 MTFR 1 MTFRVA 0 TFR 1 TFFYAR 0 TFR 1 TFFYAR 1 TFFYAR 1 TFFYAR 1 GPSPFK 1 GPSPFKODPK 1 GDOPKAIGLVEALR 1 AIAGLVEALRACE 1 AIAGLVEALROGER 1 DOGERFVTLLOATOTOK 1 PUTLLGATOTOK 1 FVTLLGATOTOKK	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1012.75	$\begin{array}{c} 149.05\\ 553.27\\ 872.43\\ 422.23\\ 741.39\\ 337.18\\ 803.43\\ 484.26\\ 1009.52\\ 543.27\\ 1536.86\\ 1011.61\\ 1468.80\\ 475.20\\ 1620.85\\ 1163.65\\ 1794.99\\ 649.35\\ \end{array}$	0 MTFR 1 MTFRTR 0 TFR 1 TFRYBR 0 TYR 1 TFRYBR 0 SPSPK 1 GPSPKKODQFK 0 GOQFR 1 GPOPKAIAGLVEALR 1 ATAGLVEALR 1 ATAGLVEALROPER 0 DEGR 1 DEGREVUTLLGATOTOK 0 FVTLLGATOTOK 0 TVTMAK	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1012.75	149.05 553.27 872.43 422.23 741.39 337.18 803.43 484.26 1009.52 543.27 1536.86 1011.61 1466.80 475.20 1620.85 1163.65 1794.99 169.35 2291.34	0 NTFR 1 NTFRVR 0 TFR 1 TFRVR 1 TFRVR 0 YR 1 YRCPSPK 0 GPSPK 1 GPSPKGDOPK 0 GOPK 1 GOPKAIJGLVEALR 0 AIAGLVEALR 0 AIAGLVEALR 1 AIAGLVEALRDGER 0 DGER 1 DGERFVTLLGATGTGK 1 DUERFVTLLGATGTGK 1 VTTLAGATGTGKK 1 TVTNAK 1 TVTNAK	,

Besides the error graph mentioned earlier, the protein view also shows the hits highlighted on the protein sequence and a table of all the peptides from the *in silico* digest.

File Edit View Favorite	s Tools Holp		
🗕 Back 👻 🤿 👻 🔯	🖓 🔇 Search 🚡 Fav	orites 😗 History 🛛 🛃 🐨 🖛 🖃	
Address 🙋 http://dell5000/m	ascot/cgi/protein_view.pl?fil	e=/data/20010523/F041288.dat&hit=1	Go] Li
642 - 651	1111.65	1 ALEARLQGVR	
647 - 651	571.34	D LQGVR	
647 - 660	1431.79	1 LQGVRAPEPVPGGR	
652 - 660	878.46] APEPVPGGR	
652 - 661	1006.56	1 APEPVPGGRK	
661 - 661	146.11	с к	
661 - 662	302.21	1 KR	
662 - 662	174.11		
662 - 663	302.21	1 RK	
663 - 663	146.11) K	
663 - 664	302.21	1 KR	
664 - 664	174.11	J R	
664 - 665	330.21	1 RR	
665 - 665	174.11) R	
hermus thermophile Species BAA08653 Species UVRB_THE	Thermus thermop TH: Thermus aquat	plete cds Thermus thermophilus hilus icus (subsp. thermophilus).	
C:Species BAA08653 C:Species UVRB_THE C:Accession: D49911 C:Locus: THHUVRB R:Kato,R. Direct Submission Submitted (25-MAR- R:Kato,R. Jnpublished (1996) R:Kato,R., Yamamott ATPase activity of J. Biol. Chem. 271 C:Keywords: UVRB.	: Thermus thermop TH: Thermus aquat 1995) to the DDBJ Do,N., Kito,K. and UVEB protein for	hilus icus (subsp. thermophilus). /EMBL/GenBank databases. Ryuichi Kato, Osaka University, Graduate School of Science Kuramitsu,S. m Thermus thermophilus HB8 and its interaction with DNA	, Dep
Thermus thermophil ;;pecies BAA08653 ;;pecies UVRB_THE ;;Accession: D4991 ;;Locus: THUVRB ;;Kato,R. Hrect Submission ;;Kato,R. hpublished (1996) ;;Kato,R., Yamamoto ;TPase activity of . Biol. Chem. 271	: Thermus thermop rH: Thermus aquat (1995) to the DDBJ, b,N., Kito,K. and UVrB protein for (16), 9612-9618	hilus icus (subsp. thermophilus). /EMBL/GenBank databases. Ryuichi Kato, Osaka University, Graduate School of Science Kuramitsu,S. m Thermus thermophilus HB8 and its interaction with DNA	, Dep

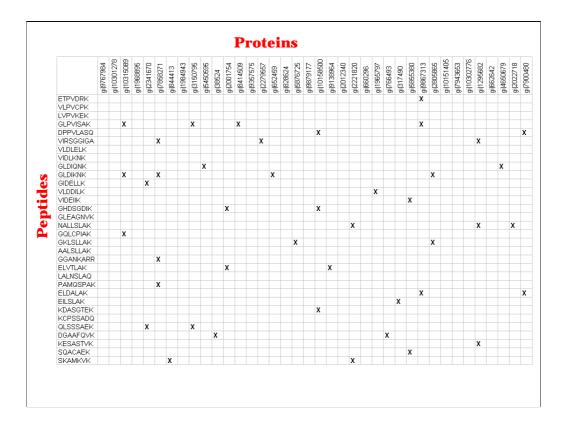
If available, the full annotation text is displayed at the bottom of the protein view.

Repeating searches


- Click on "Re-search all" or "Search Selected"
- Repeat to get a better score to 'validate' results - increase number of missed cleavages
 - look at error graph, is tolerance 'correct'
- Repeat when no significant match - try different modifications
 - try increasing the mass tolerance

Peptide Summary

- Default for MS/MS ions search
- Lists top scoring peptide matches grouped into protein matches
- **Tries to answer the question:** which minimal set of proteins best accounts for the peptides matches found in the experimental data?


When we have just a single MS/MS spectrum, life is simple. Either we get a peptide match, or we don't.

Mascot Search Results - Microsoft Internet Explorer	_ 8 >
Eile Edit View Favorites Iools Help	
↓= Back + → - 🙆 👔 🚰 @ Search @ Favorites @History 🖏 🐨 + 📄	
Address 🙋 http://dell5000/mascot/cgi/master_results.pl?file=/data/20010515/F041285.dat	💌 🧬 Go 🛛 Links
	4
1. CAA23711 Mass: 16229 Total score: 79 Peptides matched: 1	
GGLYS1 NID: - Gallus gallus	
\square Check to include this hit in archive report	
Query Observed Mr(expt) Mr(calc) Delta Miss Score Rank Peptide	
<u>1</u> 1428.70 1427.69 1427.64 0.05 0 79 1 FESNENTQATNR	
Proteins matching the same set of peptides:	
A61281 Mass: 3162 Total score: 79 Peptides matched: 1	
lysozyme homolog AT-2, bone - rat (fragments)	
1AT51 Mass: 10989 Total score: 79 Peptides matched: 1	
lysozyme (EC 3.2.1.17) succinimide at residue 101, fragment 1 - chicken	
<u>1UIA</u> Mass: 14011 Total score: 79 Peptides matched: 1	
lysozyme (EC 3.2.1.17) mutant DEL(14,15) - chicken	
<u>1MELL</u> Mass: 14035 Total score: 79 Peptides matched: 1	
lysozyme (EC 3.2.1.17), chain L - chicken JU0237 Mass: 14385 Total score: 79 Peptides matched: 1	
1900237 Rass: 13555 lotal source: /9 repitters matched: 1 lysozyme (EC 3.2.1.17) C precursor – Japanese quail	
1800A Mass: 14304 Total score: 79 Peptides matched: 1	
lysozyme mucopeptide, n-acetylmuramyl hydrolase (EC 3.2.1.17) - chicken	
1AT6 Mass: 14300 Total score: 79 Peptides matched: 1	
lysozyme (EC 3.2.1.17) isoaspartate at residue 101 - chicken	
1A2YC Mass: 14260 Total score: 79 Peptides matched: 1	
lysozyme (EC 3.2.1.17) mutant (D18Å), chain C - chicken	
1KXW Mass: 14305 Total score: 79 Peptides matched: 1	
lysozyme (EC 3.2.1.17) mutant N27D - chicken	
1KXX Mass: 14304 Total score: 79 Peptides matched: 1	
lysozyme (EC 3.2.1.17) mutant D18N, N27D - chicken	
1KXY Mass: 14303 Total score: 79 Peptides matched: 1	
lysozyme (EC 3.2.1.17) mutant D18N - chicken	
<u>1UIC</u> Mass: 14238 Total score: 79 Peptides matched: 1	
lysozyme (EC 3.2.1.17) mutant H15Å - chicken	
<u>1UID</u> Mass: 14314 Total score: 79 Peptides matched: 1	
lysozyme (EC 3.2.1.17) mutant H15F - chicken	
<u>1UIE</u> Mass: 14224 Total score: 79 Peptides matched: 1	
lysozyme (EC 3.2.1.17) mutant H15G - chicken 1UIF Mass: 14266 Total score: 79 Peptides matched: 1	
1UIF Mass: 14266 Total score: 79 Peptides matched: 1 lysozyme (EC 3.2.1.17) mutant H15V - chicken	
iysuzyme (EC 3.2.1.17) mutant nisv - Chicken 2HELV Mace: 14215 Total conce. 70 Dantides matched: 1	
Done	E Local intranet

If we get a match,and the peptide is unique to one protein family, we have a protein match

_	sults - Microsoft Inte	
<u>Eile E</u> dit ⊻iew I	F <u>a</u> vorites <u>T</u> ools <u>H</u> el	p
\Leftrightarrow Back $\bullet \Rightarrow \bullet $	🗿 😰 🐴 🔍 Searc	h 🝙 Favorites 🎯 History 🛛 😓 + 🎒 🐨 📼
Address 🙋 http://del	ll5000/mascot/cgi/master	_results.pl?file=/data/20001016/F003980.dat 🗾 🔗 Go 🗍 Lin
,		
(MATRIX) (SCIENCE)	Aascot So	earch Results
User	: JSC	
Email	: JSC@work	
Search title	: Annexin mix	ς
MS data file	: U:\Mascot	test data/Glaxo/gtof10348.pkl
Database	: MSDB 20000	521 (508120 sequences; 156794043 residues)
Timestamp	: 16 Oct 2000) at 13:38:06 GMT
Significant hi	ts: <u>LUHU</u>	annexin I - human
	AAC52068	HSTALDR3 NID: - Homo sapiens
	AAB19866	S57440S13 NID: - Rattus sp.
	AAC78495	OCU24656 NID: - Oryctolagus cuniculus
	1TGSZ	trypsin (EC 3.4.21.4) precursor (with pancreatic secretory trypsin inhibitor), chain Z - bov
	1NTP	trypsin (EC 3.4.21.4) (isopropylphosphorylated) – bovine
	AAA36574	HUMRNPA2A NID: - Homo sapiens
	A32915	nucleophosmin - human
	Q9TTV2	VITAMIN D RESPONSE ELEMENT BINDING PROTEIN Saguinus oedipus (Cotton-top tamarin).
	<u>Q9XSY6</u>	HRRNP A/B RELATED PROTEIN (FRAGMENT) Felis silvestris catus (Cat).
	<u>560335</u> 090ZD9	TGF-beta receptor interacting protein 1 - human TGF-BETA RECEPTOR BINDING PROTEIN Mus musculus (Mouse).
	<u>990209</u> B38611	casein kinase II (EC 2.7.1) alpha' chain - chicken
	B35838	case in kinase II (EC 2.7.1) alpha chain - Chicken
	\$55282	isocitrate dehydrogenase (MAD+) (EC 1.1.1.41) alpha chain precursor - human
	AAB47721	Could not retrieve title string
	\$41754	CRKL protein - human
	KRHU2	keratin 1, type II, cytoskeletal – human
	LUGP1	annexin I - guinea pig
	BAA37117	AB001915 NID: - Homo sapiens
	S40776	ribonucleoprotein - African clawed frog
	CAA64477	SSANNEXNI NID: - Sus scrofa
	AAA59468	HUMKRT10A NID: – Homo sapiens
	PC4375	telomeric and tetraplex DNA binding protein qTBP42 V - rat (fragment)
	JC5660	hepatoma-derived growth factor - mouse
	1HA11	hnrnp al hnrnp al (rbdl, rbd2) hnrnp al 1-184, fragment 1 - human
	152962	FBRNP – human
	093446	ANNEXIN MAX3 Oryzias latipes (Medaka fish).
	<u>G3P2_HUMAN</u>	GLYCERALDEHYDE 3-PHOSPHATE DEHYDROGENASE, LIVER (EC 1.2.1.12) Homo sapiens (Human).
í l		
2		() Cell Local intranet

However, if we have a complex data set, containing many MS/MS spectra which match to peptides from a number of different proteins, trying to report which proteins have been identified becomes more subjective.

When Mascot searches MS/MS data, it is getting peptide matches.

Looking at the peptide matches and trying to determine which proteins were present is a secondary process, which is actually done by the report script.

We can think of the results from a Mascot search of an LC-MS/MS search as a huge matrix. The columns are proteins and the rows are peptides.

This isn't a diagonal matrix, with just one cross in each row or column. In most cases, a peptide match can be found in several proteins. And, very often, a protein will contain several peptide matches.

To produce a simple, linear list of protein matches, we take the column with the highest score, and call that protein hit number 1. Any other proteins which match the same set of peptides, or a subset, are considered to be equivalent, but inferior matches, and collapsed into the same hit. These proteins are removed from the matrix, and we then look for the next highest scoring column ... and so on.

```
Mascot Search Results - Microsoft Internet Explorer
                                                                                                                                                                                                                                                                                      _ [🖓 🗙
   File Edit View Favorites Tools Help
                                                                                                                                                                                                                                                                                       1
   ↔ Back • ⇒ • ③ 👔 🐴 🔍 Search 📾 Favorites 🔇 History 🛛 🖏 • 🛃 🐨 • 🗐
  Address 🛃 http://dell5000/mascot/cgi/master_results.pl?file=../data/20001016/F003980.dat
                                                                                                                                                                                                                                                                    🔹 🤗 Go 🛛 Links
       Query Observed Mr(expt) Mr(calc) Delta Miss Score Rank Peptide
          <u>64</u>
67

        453.17
        1356.48
        1356.71
        -0.23
        1
        12
        3

        691.21
        1380.40
        1380.64
        -0.25
        0
        61
        1

        695.74
        1389.46
        1389.67
        -0.22
        0
        52
        1

                                                                                                                                                                QSVEADINGLRF
   ✓ <u>67</u>
                                                                                                                                                1 ALEESNYELEGK
1 QSLEASLAETEGR
   ✓ <u>70</u>

        Proteins matching the same set of peptides:
        KRMSF1
        Total score:
        122
        Peptides matchel:
        3

        <u>AAA39391</u>
        Total score:
        122
        Peptides matchel:
        3

        <u>A31934</u>
        Total score:
        122
        Peptides matchel:
        3

        KRHUO
        Total score:
        121
        Peptides matched:
        3

        K1CJ_HUMAN
        Total score:
        121
        Peptides matched:
        3

           <u>PC4375</u> Mass: 4076 Total score: 105 Peptides matched: 2
telomeric and tetraplex DNA binding protein qTBP42 V - rat (fragment)
  24. <u>PC4375</u>
   \Box Check to include this hit in archive report
      Query Observed Mr(expt) Mr(calc) Delta Miss Score Rank Peptide

        84
        752.26
        1502.50
        1502.76
        -0.26
        0
        53
        1
        IFVGGINPEATEEK

        109
        591.55
        1771.63
        1771.95
        -0.32
        1
        52
        1
        IFVGGINPEATEEKIR

  25. JC5660 Mass: 26253 Total score: 103 Peptides matched: 3
hepatoma-derived growth factor - mouse
   □ Check to include this hit in archive report
       Query Observed Mr(expt) Mr(calc) Delta Miss Score Rank Peptide
   ✓ <u>36</u>

        564.18
        1126.34
        1126.52
        -0.18
        0
        27
        1
        DLPPYEESK

        910.27
        1818.53
        1818.88
        -0.35
        0
        51
        1
        GFSEGLWEI

        649.90
        1946.66
        1946.97
        -0.31
        1
        26
        1
        KGFSEGLWEI

                                                                                                                                                                GF SEGLWE IENNP TVF
   ✓ <u>119</u>

    <u>125</u>
    649.90
    1946.66

                                                                                                                                                                KGF SEGLWE IENNP TVK

        Proteins matching the same set of peptides:

        Q9X3K7
        Total score:
        103
        Peptides matched:
        3

        A55055
        Total score:
        102
        Peptides matched:
        3

                                                                                                                                                                                                                                        Cocal intranet
```

In the reports, we try to provide clues as to the most likely assignments. We use red to indicate that a peptide match is the top ranking match. We use bold type to indicate that this is the first time in the report that we have listed a match to a particular spectrum.

So, Hit 24 has two nice, top-ranking matches, but they are not in bold face type. This indicates that we have already seen matches to these spectra in earlier, i.e. higher scoring, proteins, which probably means that this protein match is spurious ... but one can't be sure.

Peptide Summary

- Bold face type: First match listed for this spectrum
- Red type: Top ranking peptide match for this spectrum
- Protein match without any bold red peptide matches is unlikely to be correct

K2C1_HUMAN	KRHU2	Query	Score	Sequence
*	*	25	23	TLLEGEESR
	*	30	43	AQYEDIAQK
*		56	80	SLDLDSIIAEVK
*	*	80	68	WELLQQVDTSTR
*	*	104	37	QISNLQQSISDAEQR

The peptide summary report represents one reasonable interpretation of the results. Sometimes, there are alternatives which cannot be resolved. For example, we might have this situation, where there are four matches to one keratin and four matches to another keratin.

It could be that only the left hand keratin was actually present in the sample, and the match to AQYEDIAQK is unreliable, or belongs to a different protein. Or, it could be that the keratin in the sample was a variant, not present in the database, which contains all five peptide matches. There are several other possible interpretations, and we cannot be certain which is correct.

.								
		rosoft Internet	Explorer					
	View Favorites							
🗘 Back 👻 =) 🖞 🙆 🖌 🖉	} 🕅 🎝 Search 🛛	🖥 Favorites 🛛 🕥	History 🛛 🗒	b- 🎒 i	W • 🗏		
Address 🤕 ht	tp://dell5000/mase	ot/cgi/master_resu	ults.pl?file=/data	/20001016/F	289840.d	ət		▼ (c ² Go Li
,								
1. gi 103-	48033 Mas:	s: 35874 1	fotal score	700 P	eptide:	s mate	hed: 1	4
601512	345F1 NIH_M	GC_71 Homo s	sapiens cDN	l clone	IMAGE:	391381	1 5'	
🗌 Check t	o include t	his hit in	archive rep	ort				
0	Observed	Mr(expt)	Mr(calc)	Delta	Mi		Rank	Peptide
Query			Mr(Calc) 828.51	-0.14			калк 1	-
✓ <u>12</u>	415.19	828.36			0	33	_	NALLSLAK
✓ <u>45</u>	607.16	1212.31	1212.53	-0.21	0	70	1	DITSDTSGDFR
✓ <u>53</u>	631.70	1261.38	1261.59	-0.22	0	69	1	TPAQFDADELR
✓ <u>69</u>	694.25	1386.49	1386.76	-0.27	0	73	1	GVDEATIIDILTK
✓ <u>91</u>	515.20	1542.58	1542.86	-0.28	1	46	1	GVDEATIIDILTKR
✓ <u>98</u>	547.49	1639.45	1639.77	-0.32	1	(41)	1	DLAKDITSDTSGDFR
✓ <u>99</u>	820.75	1639.48	1639.77	-0.29	1	52	1	DLAKDITSDTSGDFR
✓ <u>103</u>	851.77	1701.52	1701.88	-0.36	0	82	1	GLGTDEDTLIEILASR
105	870.21	1738.41	1738.73	-0.32	0	82	2	SEDFGVNEDLGDSDAR + 1 Methyl ester (DE)
✓ 123	476.92	1903.67	1904.03	-0.36	1	22	1	AAYLQETGKPLDETLKK
131	707.22	2118.63	2119.08	-0.45	1	35	2	AAMKGLGTDEDTLIEILASR + 1 Oxidation (M)
⊡ "Որ	1062.33	2122.64	2122.98	-0.35	0	(72)	1	QAWFIENEEQEYVQTVK + 1 Pyro-glu (N-term Q)
	1070 83	2139 64	2140 01	-0.37	0	84	1	OAWFIENEEQEYVQTVK
		otide matche				56	1	GGP GSAV SP YP TFNP S SDVAAL HK
Scor		han 64 indi						
Prote	tus par snot	vs all hits	for this pe	ptiae				
gi 10 Scor	re Delta	Hit Prot	ein Pepti	de			: 13	
60 72. gi 10 17		1+ gi 1034	18033 QAWFI			7660 bod	6 5' 1:13	
<u>g1 10</u> 17. 60 16.			-	PLYQKEN MPSNGKE		7820		
gi 10 16.				AKMYLNE		ched	1: 13	
60 11.			RDDDE	LGWEQGN	KNCLK	1404		
gi 10 11. 60 10				DNLAQFY			1: 13	
60 10. gi 10 10.				GEYVSLS RPEEQDP		` L	: 13	
60 10.				LGGGGGCN		1037	5 5'	
gi 10 9.	.7 0.60		LQHLH	QWEGKDY	QAEAR		: 13	
60						h865	3.5'	
1:ni11034803	3. 2:nil10347940 -	5:qi 10330826_8:c	nil 10345301 9:nil 1	0198665_31	:dil687112	27		Example a second

A search of a complete LC-MS/MS run generates a wealth of data, and presenting these results in a complex and intuitive fashion is not trivial.

Here, we have part of the Mascot report for such a search. A number of peptide matches have been assigned to a particular database entry.

For each peptide match listed in the main table, there may be better or worse matches to peptides from other entries in the database. These are shown in a pop-up window when the mouse cursor is held over a query number link.

In this example, we have one match with a high, and significant score. The remaining matches are random matches with random scores.

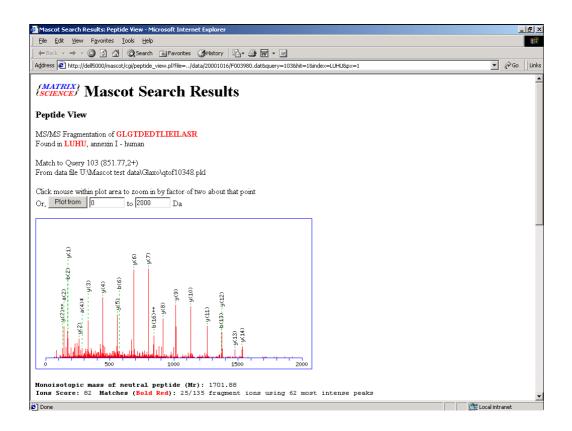
a Maso	ot Sear	ch Results - Mic	rosoft Interne	t Explorer							_ 8 ×
11		iew F <u>a</u> vorites									-
				🗟 Favorites 🛛	History	J. /4	NON . =	a			
-								2			e. Ilusta
Agares	s jezi htti	p://dell5000/masc	ot/cgi/master_res	sults.pl?file=/data	v20001016/P	-289840.0	Jat			• @	Go
			: 35874	Tet-1				b	a		<u> </u>
	i <u>1034</u> D15123			Total score sapiens cDN					1		
		-	-	archive rep							
				-							
Qu	ıery	Observed	Mr(expt)	Mr(calc)	Delta	Miss	Score	Rank	Peptide		
•	12	415.19	828.36	828.51	-0.14	0	33	1	NALLSLAK		
V	45	607.16	1212.31	1212.53	-0.21	0	70	1	DITSDTSGDFR		
~	53	631.70	1261.38	1261.59	-0.22	0	69	1	TPAQFDADELR		
~	69	694.25	1386.49	1386.76	-0.27	0	73	1	GVDEATIIDILTK		
	91	515.20	1542.58	1542.86	-0.28	1	46	1	GVDEATIIDILTKR		
•	98	547.49	1639.45	1639.77	-0.32	1	(41)	1	DLAKDITSDTSGDFR		
~	99	820.75	1639.48	1639.77	-0.29	1	52	1	DLAKDITSDTSGDFR		
V	103	851.77	1701.52	1701.88	-0.36	0	82	1	GLGTDEDTLIEILASR		
	ւթնող	870.21	1738.41	1738.73	-0.32	0	82	2	SEDFGVNEDLGDSDAR + 1 Methyl ester (DE)		
	12	476.92	1903.67	1904.03	-0.36	1	22	1	AAYLQETGKPLDETLKK		
				hes to quer			35	2	AAMKGLGTDEDTLIEILASR + 1 Oxidation (M)		
				dicates ide			(72)	1	QAWFIENEEQEYVQTVK + 1 Pyro-qlu (N-term Q)		
	13: 13:	tus par sno	ws all nit	s for this	peptiae		84	1	QAWF IENEEQEYYQ TVK		
	14 Sco	re Delta	Hit Pr	otein Pep	tide		66	1	GGP GSAV SPYP TFNP S SDVAAL HK		
	99		2+ gi 10		FGVNEDLA						
Prote	ei 66				FGVNEDLG FGVNEDLG						
<u>gi 1</u>	12 45				FGVNDDLA		atched				
60 gi 10	24				KASINMLR		87660 atched				
	D1 23				VEALDSEG YGLIMLMR		27820				
<u>gi 1</u>	20				NCLLICKD		atched				
	01 20				RECEWVCA		91404 atched				
gi 10 60	01. 19	.7 0.58		CRV	SESLVASV	SSR	90930				
<u>gi 1</u>		_					atched				
				sapiens cDN							
	033128 015072			al score: 6 saniens cDN					-		•
											Þ
🥭 1:gi 1	10348033								E Loc	al intranet	

In contrast, here we see several non-random, significant matches, because there are four peptides in the database which are almost, but not quite, identical.

The peptide match to this protein has a very high score, but there is another sequence with a slightly higher score. Since this protein has several other excellent matches, we are faced with a question: which of the top two peptide matches do we believe? Does the analyte have a variant sequence from that in the database, and the top match is correct? Or, is the spectrum ambiguous, and there is insufficient information to differentiate the top two matches with confidence? Either is perfectly possible.

Me	cot G	earch Result	c Microso	ft Intown	ot Euployee							-	. 8 ×
File					let Explorer								
_		View Fav			0	<i></i>		K	-				
	_	⇒ - ⊗ .				s 🎯 History	_		5				
Addre	ss 🙋	http://dell500				/data/2000101	.6/F003980	.dat			•	с ^д бо	Links
V	53	631.3	70 13	261.38	1261.	59 -0.2	20	69	1	TPAQFDADELR			
V	<u>65</u>	457.8	35 1 3	370.54	1370.	77 -0.2	31	46	1	VLDLELKGDIEK			
V	<u>69</u>	694.5	25 13	386.49	1386.	76 -0.2	70	73	1	GVDEATIIDILTK			
\checkmark	<u>91</u>	515.3	20 13	542.58	1542.	86 -0.2	81	46	1	GVDEATIIDILTKR			
	<u>92</u>	772.3	30 13	542.58	1542.	86 -0.2	81	(8)	2	GVDEATIIDILTKR			
\checkmark	<u>93</u>	775.3	76 13	549.50	1549.	81 -0.3	1 0	69	1	GTDVNVFNTILTTR			
\checkmark	ព្រ	η 547 . (19 16	539.45	1639.	77 -0.3	2 1	(41)	1	DLAKDITSDTSGDFR			
•	<u>я</u> т,	op scorin	a nenti	de meto	where to c	meru 98	· ·	52	1	DLAKDITSDTSGDFR			
V		core grea						19	1	KGTDVNVFNTILTTR			
◄		core grea						82	1	GLGTDEDTLIEILASR			
•	10 S	tatus bar	shows	all hi	ts for th	is peptide	•	99	1	SEDF GVNEDLAD SDAR			
	11 S	core De	lta Hi	t Pi	rotein	Peptide		11	7	AAYLQETGKPLDETLK			
V			.32 1	+	LUHU	DLAKDITSDI		22	1	AAYLQETGKPLDETLKK			
			.30			EVGFEVVGMC TNEVVAROMC		35	2	AAMKGLGTDEDTLIEILASR + 1 Oxidation (M)			
☑			.35			SAKAELECSS		(72)	1	QAWFIENEEQEYVQTVK + 1 Pyro-glu (N-term Q)			
✓	13 :		.34			VKMELEPYET		84	1	QAWF IENEE QE YV Q TVK			
☑	14		.29 .29			YDGDGSTGEC YDGDGSTGEC		66	1	GGP GSAV SPYP TFNP S SDVAAL HK			
			.70			GMEFCQDSAC							
Pro [.] ANX			.83			QYCSSTSCS		atched	. 22				
	ANN	9.2 -0	.36			GGTEEIYRCV	KWK			HOSPHOLIPASE A2 INHIBI			
	AAC52	0.000	Mass: 3	07516	Total c	core: 560	Bontid	log mate	body 1	a			
		LDR3 NID:				core: 560	Peptia	les matt	meu: 1	1			
	heck	to inclu	de this	hit i	n archive	e report							
	luery	observ	red Mi	(expt)	Mr(ca	lc) Delt	a Miss	Score	Rank	Peptide			
V	<u>10</u>	413.3	71 8	325.40	825.	53 -0.1	4 0	31	1	LVPVLSAK			
	<u>13</u>	425.3	L9 8	348.36	848.	48 -0.1	21	29	9	KFAADAVK			
v	15	438.0	56 8	375.31	875.	43 -0.1	20	53	1	VSTEVDAR			
7	21	499.1	L8 9	96.33	996.	51 -0.1	70	34	1	TIVMGASFR + 1 Oxidation (M)			
1							_	_			11.1		
11:0	JHU 3:	AAB19866									cal intra	Inet	

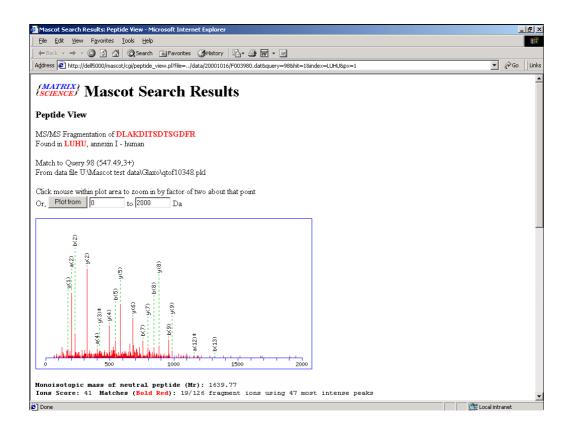
This third example shows a weak match.


Very often, this is because the quality of the MS/MS spectrum is poor. If the signal to noise ratio is low, a match to the "correct" sequence might not exceed the absolute significance threshold. Even so, the match to the correct sequence could have a relatively high score, well differentiated from the quasi-normal distribution of random scores. In other words, the score is an outlier.

This would indicate that the match was not a random event and, on inspection, such matches are often found to be either the correct match or a match to a close homolog. For this reason, Mascot also attempts to characterise the distribution of random scores, and provide a second, lower threshold to highlight the presence of any outlier. The lower, relative threshold is reported as the "homology" threshold while the higher, absolute threshold is reported as the "identity" threshold.

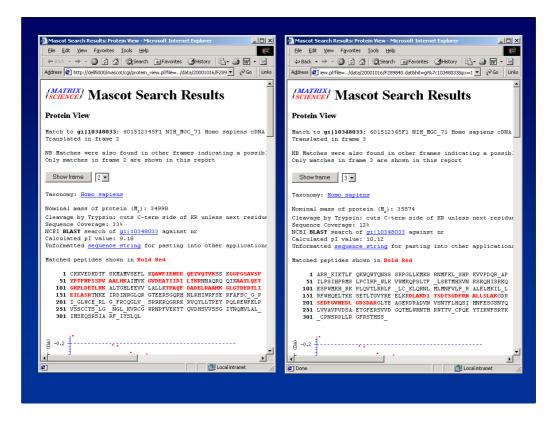
Peptide Summary

- Score exceeds homology threshold:
 - Match is not random.
 - Spectrum may not fully define sequence
 - Sequence may be close but not exact
- Score exceeds identity threshold:
 - 5% chance that match is not exact



Clicking on a query number link in the summary report loads the peptide view report. This illustrates the fragment ion matches highlighted on the MS/MS spectrum. Here we have a strong match with an almost complete series of y ions

E	Back 👻 🔿	- 🙆 🖸	1 🖓 🖉	Search	🚡 Favorite	s 🎯 Histo	ory 🖪	• 🎒	W • 🗉						
dre	ess 🩋 http	p://dell5000,	/mascot/cgi/	'peptide_vi	ew.pl?file=.	/data/2000	1016/F003	980.da	t&query=10	38hit=18in	dex=LUHU	3p×=1	=1	€° Go	
1	Immon.	a	a*	a ⁺⁺	b	b*	b++	Seq.	у	y*	y++	#			
Ī	30.03	30.03	13.01	15.52	58.03	41.00	29.52	G	1702.89	1685.86	851.95	16			
	86.10	143.12	126.09	72.06	171.11	154.09	86.06	L	1645.86	1628.84	823.44	15			
,	30.03	200.14	183.11	100.57	228.13	211.11	114.57	G	1532.78	1515.75	766.89	14			
•	74.06	301.19	284.16	151.10	329.18	312.16	165.10	Т	1475.76	1458.73	738.38	13]		
5	88.04	416.21	399.19	208.61	444.21	427.18	222.61	D	1374.71	1357.69	687.86	12			
	102.06	545.26	528.23	273.13	573.25	556.23	287.13	E	1259.68	1242.66	630.35	11	_		
7	88.04	660.28	643.26	330.65	688.28	671.25	344.64	D	1130.64	1113.62	565.82	10	_		
	74.06	761.33	744.31	381.17	789.33	772.30	395.17	Т	1015.62	998.59	508.31	9	_		
1	86.10	874.42	857.39	437.71	902.41	885.38	451.71	L	914.57	897.54	457.79	8			
1	86.10	987.50	970.47	494.25	1015.49	998.47	508.25	Ι	801.48	784.46	401.25	7	-		
	102.06	1116.54	1099.52	558.78	1144.54	1127.51	572.77	Е	688.40	671.37	344.70	6			
	86.10	1229.63	1212.60	615.32	1257.62	1240.59	629.31	Ι	559.36	542.33	280.18	5	_		
	86.10	1342.71	1325.68	671.86	1370.71	1353.68	685.86	L	446.27	429.25	223.64	4	_		
I	44.05	1413.75	1396.72	707.38	1441.74	1424.72	721.38	Α	333.19	316.16	167.10	3	_		
5	60.04	1500.78	1483.75	750.89	1528.77	1511.75	764.89	S	262.15	245.12	131.58	2	_		
5	129.11	1656.88	1639.85	828.94	1684.88	1667.85	842.94	R	175.12	158.09	88.06	1			
-	0.5 0.25 0.25 0.25 0.5	ppn	500		1000	 									


Further down, the matched peaks are highlighted in a table of calculated fragment ion masses. The peptide view is also where you can find the new graph of the error distribution for fragment ion masses.

This is the peptide view for the weak match shown earlier. It can be seen that there is very little information above the precursor, and the signal to noise is not great

noiso ns Sc	ntonic r		scot/cgi/p	·	Favorite iew.pl?file=.	-			t&query=98	8hit=18ind	ex=LUHU&	p×=1	-1	• @Go	
ns sc	-				eptide (
	core: 4.	1 Mat	cnes (вота в	(ea): 19	/126 Ir	agment	lons	s using	4/ most	intens	se p	peaks		
i Imm	non. a	a	a*	a ⁺⁺	b	b*	b++	Seq.	у	y*	y++	#			
1 88	8.04 8	8.04	71.01	44.52	116.03	99.01	58.52	D	1640.78	1623.75	820.89	15	5		
2 86	6.10 20	1.12 1	84.10	101.07	229.12	212.09	115.06	L	1525.75	1508.72	763.38	14	k l		
44	4.05 27	2.16 2	255.13	136.58	300.16	283.13	150.58	Α	1412.67	1395.64	706.84	13	b		
101	1.11 40	0.26 3	383.23	200.63	428.25	411.22	214.63	К	1341.63	1324.60	671.32	12			
5 88	8.04 51	5.28 4	198.26	258.15	543.28	526.25	272.14	D	1213.53	1196.51	607.27	11			
86	6.10 62	8.37 6	511.34	314.69	656.36	639.34	328.68	Ι	1098.51	1081.48	549.76	10			
74	4.06 72	9.41 7	712.39	365.21	757.41	740.38	379.21	Т	985.42	968.40	493.22	9			
60	0.04 81	6.45 7	799.42	408.73	844.44	827.42	422.72	S	884.37	867.35	442.69	8	B		
88	8.04 93	1.47 9	914.45	466.24	959.47	942.44	480.24	D	797.34	780.32	399.18	7	7		
					1060.52			Т	682.32	665.29	341.66	6	5		
60	0.04 111	9.55 11	102.53	560.28	1147.55	1130.52	574.28	S	581.27	564.24	291.14	5	5		
30	0.03 117	6.57 <mark>11</mark>	59.55	588.79	1204.57	1187.54	602.79	G	494.24	477.21	247.62	4			
88	8.04 129	1.60 12	274.58	646.30	1319.60	1302.57	660.30	D	437.21	420.19	219.11	3	b		
120	0.08 143	8.67 14	121.64	719.84	1466.67	1449.64	733.84	F	322.19	305.16	161.60	2			
129	9.11 159	4.77 15	577.74	797.89	1622.77	1605.74	811.89	R	175.12	158.09	88.06	1			

The N terminal end of the sequence is pretty much undefined. This is a good example of a spectrum which might get a match above the homology threshold, but lacks the information required to exceed the identity threshold

Finally, a major difference between reports from searching a protein database and those from searching a nucleic acid database is the possibility of frame shifts within the entry.

Thus, in the protein view report, there is a drop down list for the different translation frames. For this particular entry, most of the matches have been found in reading frame 2. But, as so often happens, there is a frame shift in this entry, and there are additional matches in frame 3.